Advertisement

Analysis of CFTR Trafficking and Polarization Using Green Fluorescent Protein and Confocal Microscopy

  • Bryan D. Moyer
  • Bruce A. Stanton
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 70)

Abstract

Expression of endogenous cystic fibrosis transmembrane conductance regulator (CFTR) in many epithelial cells is either low or difficult to detect or below the limit of detection using currently available microscopic techniques (1,2). In addition, studies utilizing CFTR antibodies to detect CFTR frequently suffer from problems of antibody specificity (3). Use of the green fluorescent protein (GFP) as a molecular marker for CFTR localization may circumvent the problems of low CFTR expression and poor antigenicity and facilitate research of CFTR in epithelial cells.

Keywords

Green Fluorescent Protein Cystic Fibrosis Transmembrane Conductance Regulator Green Fluorescent Protein Fluorescence Apical Chamber Basolateral Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Crawford, I., Maloney, P. C., Zeitlin, P. L., Guggino, W. B., Hyde, S. C., Turley, H., Gatter, K. C., Harris, A., and Higgins, C. F. (1991) Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc. Natl. Acad. Sci. USA 88, 9262–9266.CrossRefPubMedGoogle Scholar
  2. 2.
    Engelhardt, J. F., Yankaskas, J. R., Ernst, S. A., Yang, Y., Marino, C. R., Boucher, R. C., Cohn, J. A., and Wilson, J. M. (1992) Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nature Gen. 2, 240–248.CrossRefGoogle Scholar
  3. 3.
    Walker, J., Watson, J., Holmes, C., Edelman, A., and Banting, G. (1995) Production and characterization of monoclonal and polyclonal antibodies to different regions of the cystic fibrosis transmembrane conductance regulator (CFTR): detection of immunologically related proteins. J. Cell Sci. 108, 2433–2444.PubMedGoogle Scholar
  4. 4.
    Chalfie, M., Tu, Y., Erskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.CrossRefPubMedGoogle Scholar
  5. 5.
    Gerdes, H.-H. and Kaether, C. (1996) Green fluorescent protein: applications in cell biology. FEBS Lett, 389, 44–47.CrossRefPubMedGoogle Scholar
  6. 6.
    Lippincott-Schwartz, J., Cole, N., and Presley, J. (1998) Unravelling Golgi membrane traffic with green fluroescent protein chimeras. Trends Cell Biol. 8, 16–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Lippincott-Schwartz, J. and Smith, C. L. (1997) Insights into secretory and endocytic membrane traffic using green fluorescent protein chimeras. Curr. Biol. 7, 631–639.CrossRefGoogle Scholar
  8. 8.
    Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y. (1995) Understanding, improving, and using green fluorescent proteins. Trends Biochem. Sci. 20, 448––455.CrossRefPubMedGoogle Scholar
  9. 9.
    Tsien, R. Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.CrossRefPubMedGoogle Scholar
  10. 10.
    Griffiths, G., Parton, R. G., Lucocq, J., van Deurs, B., Brown, D., Slot, J. W., and Geuze, H. J. (1993) The immunofluorescent era of membrane traffic. Trends Cell Biol. 3, 214–219.CrossRefPubMedGoogle Scholar
  11. 11.
    Chalfie, M. and Kain, S. (eds.) (1998) Green Flourescent Protein: Properties, Applications and Protocols, Wiley-Liss & Sons, Inc., New York, NY.Google Scholar
  12. 12.
    Conn, P. M. (ed.) (1999) Methods In Enzymology: Green Fluorescent Protein, Academic Press, San Diego, CA.Google Scholar
  13. 13.
    Sullivan, K. F. and Kay, S. A. (eds.) (1999) Methods In Cell Biology: Green Fluorescent Proteins, Academic Press, San Diego, CA.Google Scholar
  14. 14.
    Sandison, D. R., Williams, R. M., Wells, K. S., Strickler, J., and Webb, W. W. (1995) Quantitive fluorescence confocal laser scanning microscopy (CLSM) in Handbook of Biological Confocal Microscopy (Pawley, J. B., ed.), Plenum Press, NY, pp. 39–53.Google Scholar
  15. 15.
    Moyer, B. D., Loffing, J., Schwiebert, E. M., Loffing-Cueni, D., Halpin, P. A., Karlson, K. H., et al. (1998) Membrane trafficking of the cystic fibrosis gene product, cystic fibrosis transmembrane conductance regulator, tagged with green fluorescent protein in Madin-Darby canine kidney cells. J. Biol. Chem. 273, 21,759–21,768.CrossRefPubMedGoogle Scholar
  16. 16.
    Moyer, B. D., Denton, J., Karlson, K. H., Reynolds, D., Wang, S., Mickle, J. E., et al. (1999) A PDZ-interacting domain in CFTR is an apical membrane polarization signal. J. Clin. Invest. 104, 1353–1361.CrossRefPubMedGoogle Scholar
  17. 17.
    Gottardi, C. J. and Caplan, M. J. (1993) An ion-transporting ATPase encodes multiple apical localization signals. J. Cell Biol. 121, 283–293.CrossRefPubMedGoogle Scholar
  18. 18.
    Lehrich, R. W., Aller, S. G., Webster, P., Marino, C. R., and Forrest, J. N., Jr.(1998) Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, Squalus acanthias: acute regulation of CFTR trafficking in an intact epithelium. J. Clin. Invest. 101, 737–745.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Bryan D. Moyer
    • 1
  • Bruce A. Stanton
    • 2
  1. 1.Department of Cell BiologyThe Scripps Research InstituteLa Jolla
  2. 2.Department of PhysiologyDartmouth Medical SchoolHanover

Personalised recommendations