Skip to main content

Detection of Telomerase Activity in Neural Cells

  • Protocol
  • 1100 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 198))

Abstract

Telomeres are specialized nucleoprotein structures that cap linear eukaryotic chromosomes and function to prevent the chromosomes from recombining or unraveling (1). Telomerase is a ribonucleoprotein (RNP) polymerase that synthesizes telomeric sequence de novo onto the 3′ end of chromosomes using a portion of its internal RNA component as a template (2,3). The regulation of telomerase activity is complex. While most differentiated somatic cells lack telomerase activity, most cancer cells, germline cells, and stem cells express detectable levels of telomerase activity (4). In those cells that lack telomerase activity, telomeric sequences are incompletely replicated during cell division due to the end replication problem of DNA polymerases (5,6) and thus the net length of telomeres in the daughter cells is reduced (7). The progressive loss of telomeric DNA triggers a growth-arrest mechanism in normal somatic cells (8). However, in cells that maintain telomerase activity, telomeres can be completely replicated with no loss of sequence information during cell division, and proliferation can continue without activating this check point (9). Therefore, by maintaining the integrity of telomeres, telomerase plays an important role in unlimited cellular proliferation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Blackburn, E. H. (1994) Telomeres: No end in sight. Cell 77, 621–623.

    Article  PubMed  CAS  Google Scholar 

  2. Greider, C. W. and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413.

    Article  PubMed  CAS  Google Scholar 

  3. Greider, C. W. and Blackburn, E. H. (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337.

    Article  PubMed  CAS  Google Scholar 

  4. Collins, K. (2000) Mammalian telomeres and telomerase. Curr. Opin. Cell Biol. 12, 378–383.

    Article  PubMed  CAS  Google Scholar 

  5. Watson, J. D. (1972) Origin of concatameric T4 DNA. Nature 239, 197–201.

    Article  CAS  Google Scholar 

  6. Olovnikov, A. M. (1973) A theory of marginotomy. J. Theor. Biol. 41, 181–190.

    Article  PubMed  CAS  Google Scholar 

  7. Harley, C. B., Futcher, A. B., and Greider, C. W. (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460.

    Article  PubMed  CAS  Google Scholar 

  8. Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., and Harley, C. B. (1992) Telomere end-replication problem and cell aging. J. Mol. Biol. 225, 951–960.

    Article  PubMed  CAS  Google Scholar 

  9. Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C.-P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S., and Wright, W. E. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352.

    Article  PubMed  CAS  Google Scholar 

  10. Morin, G. B. (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521–529.

    Article  PubMed  CAS  Google Scholar 

  11. Kim, N. M., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L. C., Coviello, G. M., Wright, W. E., Weinrich, S. L., and Shay, J. W. (1994) Specific association of human telomerase with immortal cells and cancer. Science 266, 2011–2015.

    Article  PubMed  CAS  Google Scholar 

  12. Morrison, S. J., Prowse, K. R., Ho, P. L., and Weissman, I. L. (1996) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5, 207–216.

    Article  PubMed  CAS  Google Scholar 

  13. Kim, N. M. and Wu, F. (1997) Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucl.Acids Res. 25, 2595–2597.

    Article  PubMed  CAS  Google Scholar 

  14. Piatyszek, M. A., Kim, N. M., Weinrich, S. L., Hiyama, K., Hiyama, E., Wright, W. E., and Shay, J. W. (1995) Detection of telomerase activity in human cells and tumors by a telomeric repeat amplification protocol (TRAP). Methods in Cell Sci. 17, 1–15.

    Article  Google Scholar 

  15. Ostenfeld, T., Caldwell, M. A., Prowse, K. R., Linskens, M. H. K., Jauniaux, E.,and Svendsen, C. N. (2000) Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp. Neurol. 164, 215–226.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Prowse, K.R. (2002). Detection of Telomerase Activity in Neural Cells. In: Zigova, T., Sanberg, P.R., Sanchez-Ramos, J.R. (eds) Neural Stem Cells: Methods and Protocols. Methods in Molecular Biology™, vol 198. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-186-8:137

Download citation

  • DOI: https://doi.org/10.1385/1-59259-186-8:137

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-964-3

  • Online ISBN: 978-1-59259-186-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics