Skip to main content

Assessing the Involvement of Telomerase in Stem Cell Biology

  • Protocol
  • 1086 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 198))

Abstract

Highly proliferative cells including stem cells and cancer cells express high levels of telomerase, an enzyme activity that adds a six-base DNA repeat sequence (TTAGGG) to chromosome ends and thereby prevents their shortening during successive rounds of mitosis (1,2). Telomerase activity decreases in association with cell differentiation and is generally absent from most somatic cells in the adult; shortening of telomeres in such somatic cells may trigger cell cycle arrest in the G1 phase (cellular senescence). In this way, telomere shortening effectively limits the proliferative potential of cells, functions as a tumor suppressor mechanism and may contribute to the aging process (36). Telomerase consists of an RNA template (TR) and a protein called TERT that possesses reverse transcriptase activity. Several telomere-associated proteins have been identified including TRF1 (telomere repeat-binding factor 1) that may inhibit telomerase activity and promote telomere shortening, and TRF2 which may promote maintenance of telomeres (7,8). Data obtained during the past several years have provided evidence that telomerase can play important roles in the regulation of cell proliferation, differentiation, and survival. Examples include overexpression of hTERT can immortalize cultured fibroblasts and epithelial cells (4); telomerase is downregulated during muscle cell differentiation (9); and TERT promotes cell survival (prevents apoptosis) of developing mouse and rat brain neurons (1012).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Morin, G. B. (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521–529.

    Article  PubMed  CAS  Google Scholar 

  2. Lingner, J., Hughes, T. R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T. R. (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase.Science 276, 561–567.

    Article  PubMed  CAS  Google Scholar 

  3. Rhyu, M. S. (1995) Telomeres, telomerase and immortality. J. Nat. Canc. Inst. 87, 884–894.

    Article  CAS  Google Scholar 

  4. Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S., and Wright, W. E. (1998) Extension of life span by introduction of telomerase into normal human cells. Science 279, 349–352.

    Article  PubMed  CAS  Google Scholar 

  5. Vaziri, H. and Benchimol, S. (1998) Reconstitution of telomerase activity in normal cells leads to elongation of telomeres and extended replicative lifespan.Curr. Biol. 8, 279–282.

    Article  PubMed  CAS  Google Scholar 

  6. Liu, J. P. (1999) Studies of the molecular mechanisms in the regulation of telomerase activity. FASEB J. 13, 2091–2104.

    PubMed  CAS  Google Scholar 

  7. Broccoli, D., Smogorzewska, A., Chong, L., and de Lange, T. (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nature Gen. 17, 231–239.

    Article  CAS  Google Scholar 

  8. Van Seensel, B. and de Lange, T. (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743.

    Article  Google Scholar 

  9. Fu, W., Killen, M., Pandita, T., and Mattson, M. P. (2000) The catalytic subunit of telomerase is expressed in developing brain neurons and serves a cell survivalpromoting function. J. Mol. Neurosci. 14, 3–15.

    Article  PubMed  CAS  Google Scholar 

  10. Zhu, H., Fu, W., and Mattson, M, P. (2000) The catalytic subunit of telomerase protects neurons against amyloid β-peptide-induced apoptosis. J. Neurochem 75, 117–124.

    Article  PubMed  CAS  Google Scholar 

  11. Klapper, W., Shin, T., and Mattson, M. P. (2001) Differential regulation of telomerase activity and TERT expression during brain development in mice.J. Neurosci. Res. 64, 252–260.

    Article  PubMed  CAS  Google Scholar 

  12. Pain, B., Clark, M. E., Shen, M., Nakazawa, H., Sakurai, M., Samarut, J., and Etches, R. J. (1996) Long-term in vitro culture and characterization of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122, 2339–2348.

    PubMed  CAS  Google Scholar 

  13. Amit, M., Carpenter, M. K., Inokuma, M. S., Chiu, C. P., Harris, C. P., Waknitz, M. A., Itskovitz-Eldor, J., and Thomson, J. A. (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278.

    Article  PubMed  CAS  Google Scholar 

  14. Hiyama, K., Hirai, Y., Kyoizumi, S., Akiyama, M., Hiyama, E., Piatyszek, M. A., Shay, J. W., Ishioka, S., and Yamakido, M. (1995) Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J. Immunol. 155, 3711–3715.

    PubMed  CAS  Google Scholar 

  15. Yui, J., Chiu, C. P., and Lansdorp, P. M. (1998) Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood 91, 3255–3262.

    PubMed  CAS  Google Scholar 

  16. Ostenfeld, T., Caldwell, M. A., Prowse, K. R., Linskens, M. H., Jauniaux, E.,and Svendsen, C. N. (2000) Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp. Neurol. 164, 215–226.

    Article  PubMed  CAS  Google Scholar 

  17. Betts, D., Bordignon, V., Hill, J., Winger, Q., Westhusin, M., Smith, L., and King, W. (2001) Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl. Acad. Sci. USA 98, 1077–1082.

    Article  PubMed  CAS  Google Scholar 

  18. Krupp, G., Kuhne, K., Tamm, S., Klapper, W., Heidorn, K., Rott, A., and Parwaresch, R. (1997) Molecular basis of artifacts in the detection of telomerase activity and a modified primer for a more robust’ TRAP’ assay. Nucleic Acids Res. 25, 919–921.

    Article  PubMed  CAS  Google Scholar 

  19. Klapper, W., Singh, K. K., Heidorn, K., Parwaresch, R., and Krupp, G. (1998) Regulation of telomerase activity in quiescent immortalized human cells. Biochim.Biophys. Acta 1442, 120–126.

    Article  PubMed  CAS  Google Scholar 

  20. Guo, Q., Furukawa, K., Sopher, B. L., Pham, D. G., Xie, J., Robinson, N., Martin, G. M., and Mattson, M. P. (1996) Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC 12 cells to death induced by amyloid beta-peptide.Neuroreport 8, 379–383.

    Article  PubMed  CAS  Google Scholar 

  21. Vaziri, H. and Benchimol, S. (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282.

    Article  PubMed  CAS  Google Scholar 

  22. White, L. K., Wright, W. E., and Shay, J. W. (2001) Telomerase inhibitors. Trends Biotechnol. 19, 114–120.

    Article  PubMed  CAS  Google Scholar 

  23. Fu, W., Begley, J. G., Killen, M. W., and Mattson, M. P. (1999) Anti-apoptotic role of telomerase in pheochromocytoma cells. J. Biol. Chem. 274, 7264–7271.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Mattson, M.P., Zhang, P., Fu, W. (2002). Assessing the Involvement of Telomerase in Stem Cell Biology. In: Zigova, T., Sanberg, P.R., Sanchez-Ramos, J.R. (eds) Neural Stem Cells: Methods and Protocols. Methods in Molecular Biology™, vol 198. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-186-8:125

Download citation

  • DOI: https://doi.org/10.1385/1-59259-186-8:125

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-964-3

  • Online ISBN: 978-1-59259-186-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics