Advertisement

Routes of Stem Cell Administration in the Adult Rodent

  • Alison E. Willing
  • Svitlana Garbuzova-Davis
  • Paul R. Sanberg
  • Samuel Saporta
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 198)

Abstract

Arguably one of the most exciting developments in science in the last decade is the discovery and isolation of neural stem cells (NSCs), not only from the embryonic (1,2) but also from the adult human brain (3,4). With the ability of a NSC to proliferate, self-renew, and generate a large number of clonally related progeny of a neuronal, astrocytic, or oligodendrocytic lineage, these cells promise to revolutionize the treatment of neurological disease. The potential of these cells to correct genetic diseases, such as those resulting from inborn errors of metabolism, is staggering. Studies in myelin-deficient rat (5) and shiverer mouse (6) demonstrated that it is possible to correct a myelin deficiency.

Keywords

Neural Stem Cell Middle Cerebral Artery Occlusion Tail Vein External Carotid Bone Flap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Vescovi, A. L., Parati, E. A., Gritti, A., Poulin, P., Ferrario, M., Wanke, E., Frolichsthal-Schoeller, P., Cova, L., Arcellana-Panlilio, M., Colombo, A., and Galli, R. (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71–83.PubMedCrossRefGoogle Scholar
  2. 2.
    Flax, J. D., Auroara, S., Yang, C., Simonin, C., Wills, A. M., Billinghurst, L. L., Jendoubi, M., Sidman, R. L., Wolfe, J. H., Kim, S. U., and Snyder, E. Y. (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotech. 16, 1033–1039.Google Scholar
  3. 3.
    Kirschenbaum, B., Nedergaard, M., Preuss, A., Barami, K., Fraser, R., and Goldman, S. (1994) In vitro neuronal production by precursor cells derived from the adult human brain. Cerebral Cortex. 4, 576–589.PubMedCrossRefGoogle Scholar
  4. 4.
    Kukekov, V. G., Laywell, E. D., Suslov, O., Davies, K., Scheffler, B., Thomas, L. B., O’Brien, T. F., Kusakabe, M., and Steindler, D. A. (1999) Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp. Neurol. 156, 333–344.PubMedCrossRefGoogle Scholar
  5. 5.
    Hammang, J. P., Archer, D. R., and Duncan, I. D. (1997) Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp. Neurol. 147, 84–95.PubMedCrossRefGoogle Scholar
  6. 6.
    Yandava, B. D., Billinghurst, L. L., and Snyder, E. Y. (1999) ”Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl. Acad. Sci. USA. 96, 7029–7034.PubMedCrossRefGoogle Scholar
  7. 7.
    Snyder, E. Y., Yoon, C., Flax, J. D., and Macklis, J. D. (1997) Multipotent neural presursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl. Acad. Sci. USA 94, 11,663–11,668.PubMedCrossRefGoogle Scholar
  8. 8.
    Kvinlaug, B., Brat, S., and Gloster, A. (2000) Production of central nervous system cell types from adult and postnatal murine precursor cells. Soc. Neurosci. Abstr. 26, 829.Google Scholar
  9. 9.
    Toma, J. G., Akhavan, M., Fernandes, K., Fortier, M., Sadikot, A., and Miller, F. D. (2000) Skin tissue: a source for multipotent neural stem cells. Soc. Neurosci. Abstr. 26, 828.Google Scholar
  10. 10.
    Bjornson, C. R. R., Rietze, R., Reynolds, B. A., Magli, M. C., and Vescovi, A. L. (2000) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534–537.CrossRefGoogle Scholar
  11. 11.
    Eglitis, M. A. and Mezey, E. (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl. Acad. Sci. USA 94, 4080–4085.PubMedCrossRefGoogle Scholar
  12. 12.
    Kopen, G. C., Prockop, D. J., and Phinney, D. G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA 96, 10,711–10,716.PubMedCrossRefGoogle Scholar
  13. 13.
    Azizi, S. A., Stokes, D., Augelli, B. J., DiGirolamo, C., and Prockop, D. J. (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc. Natl. Acad. Sci. USA 95, 3908–3913.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., and Chopp, M. (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32, 1005–1011.PubMedCrossRefGoogle Scholar
  15. 15.
    Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., and McKercher, S. R. (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782.PubMedCrossRefGoogle Scholar
  16. 16.
    Brazelton, T. R., Rossi, F. M., Keshet, G. I., and Blau, H. M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen, J., Li, Y., and Chopp, M. (2000) Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology 39, 711–716.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhao, L.-R., Duan, W.-M., Reyes, M., Keene, C. D., Nussbaum, E. S., Verfaille, C.M., and Low, W. C. (2000) Human bone marrow stem cells exhibit neural phenotypes after transplantation and ameliorate neurological deficits with ischemic brain injury in rats. Soc. Neurosci. Abstr. 26, 2291.Google Scholar
  19. 19.
    Li, Y., Chen, J., and Chopp, M. C. (2001) Adult bone marrow transplantation after stroke in adult rats. Cell Transplant 10, 31–40.PubMedGoogle Scholar
  20. 20.
    Chen, J., Sanberg, P. R., Li, Y., Wang, L., Lu, M., Willing, A. E., Sanchez-Ramos, J., and Chopp, M. (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32, 2682–2688.PubMedCrossRefGoogle Scholar
  21. 21.
    Harder, T., Scheiffele, P., Verkade, P., and Simons, K. (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942.PubMedCrossRefGoogle Scholar
  22. 22.
    Janes, P. W., Ley, S. C., and Magee, A. I. (1999) Aggregation of lipid rafts accompanies signaling via the T Cell Antigen Receptor. J. Cell Biol. 147, 447–461.PubMedCrossRefGoogle Scholar
  23. 23.
    Saporta, S. and Kruger, L. (1977) The organization of thalamocortical relay neurons in the rat ventrobasal complex studied by the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 174, 187–208.PubMedCrossRefGoogle Scholar
  24. 24.
    Vanegas, H., Hollander, H., and Distel, H. (1978) Early stages of uptake and transport of horseradish-peroxidase by cortical structures, and its use for the study of local neurons and their processes. J. Comp. Neurol. 177, 193–211.PubMedCrossRefGoogle Scholar
  25. 25.
    Hedreen, J. C. and McGrath, S. (1977) Observations on labeling of neuronal cell bodies, axons, and terminals after injection of horseradish peroxidase into rat brain. J. Comp. Neurol. 176, 225–246.PubMedCrossRefGoogle Scholar
  26. 26.
    Graybiel, A. M. and Devor, M. (1974) A microelectrophoretic delivery technique for use with horseradish peroxidase. Brain Res. 68, 167–173.PubMedCrossRefGoogle Scholar
  27. 27.
    Aboody, K. S., Brown, A., Rainov, N. G., Bower, K. A., Liu, S., Yang, W., Small, J. E., Herrlinger, U., Ourednik, V., Black, P. M., Breakefield, X. O., and Snyder, E. Y. (2000) From the cover: neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc. Natl. Acad. Sci. USA. 97, 12,846–12,851.PubMedCrossRefGoogle Scholar
  28. 28.
    Berden, J. H. (1986) Effects of cyclosporin A on autoimmune disease in MRL/1 and BXSB mice. Scand. J. Immunol. 24, 405–411.PubMedCrossRefGoogle Scholar
  29. 29.
    Toepfer, M., Folwaczny, C., Klauser, A., Riepl, R. L., Muller-Felber, W., and Pongratz, D. (1999) Gastrointestinal dysfunction in Amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis 1, 15–19.PubMedCrossRefGoogle Scholar
  30. 30.
    Ostermeyer-Shoaib, B., and Patten, B. M. (1993) IgG subclass deficiency in amyotrophic lateral sclerosis. Acta Neurol. Scand. 87, 192–194.PubMedCrossRefGoogle Scholar
  31. 31.
    Lapidot, T., Harel, S., Akiri, B., Granit, R., and Kanner, J. (1999) pH-dependent forms of red wine anthocyanins as antioxidants. J. Agri. Food Chem. 47, 67–70.CrossRefGoogle Scholar
  32. 32.
    Charles, R, Evans, D. F., Castillo, F. D., and Wingate, D. L. (1994) Daytime ingestion of alcohol alters nightime jejunal motility in man. Dig. Dis. Sci. 39, 51–58.PubMedCrossRefGoogle Scholar
  33. 33.
    Marimon, J. M., Bujanda, L., Gutierrez-Stampa, M. A., Cosme, A., and Arenas, J. I. (1998) In vitro bactericidal effect of wine against Helicobacter pylori. Am. J. Gastro. 93, 1392.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Alison E. Willing
    • 1
  • Svitlana Garbuzova-Davis
    • 2
  • Paul R. Sanberg
    • 3
  • Samuel Saporta
    • 1
  1. 1.Center for Aging and Brain Repair, Departments of Neurosurgery and Anatomy, College of MedicineUniversity of South FloridaTampa
  2. 2.Center for Aging and Brain Repair, Department of Neurosurgery, College of MedicineUniversity of South FloridaTampa
  3. 3.Departments of Neurosurgery, Psychiatry, Psychology, Pharmacology and Center for Aging and Brain RepairCollege of Medicine, University of South FloridaTampa

Personalised recommendations