Skip to main content

Crystallization and Structure-Function of Calsequestrin

  • Protocol
Calcium-Binding Protein Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 172))

Abstract

X-ray crystallography provides one of the most important tools for understanding structure-function relationships in proteins. Over the last several years, the scientific community has accumulated a great deal of experience making crystals and solving protein structures by X-ray diffraction. However, often the X-ray approach cannot be used because of the failure to obtain crystals, which is still considered as the single greatest experimental problem in crystallography. Currently, there is no method for predicting the conditions needed to obtain crystals for a given protein. Researchers simply screen a large number of conditions hoping to find crystals in any of the trials. Given crystals under one set of conditions, even crystals of low quality, conditions in the neighborhood of the successful trial are again surveyed in hopes of finding conditions for obtaining improved crystals. Even though crystals are obtained, some are not suitable for structure determination by X-ray diffraction. The first requirement is that a crystal must contain a sufficiently high degree of order relating one molecule to another over a sufficient number of molecules. In addition, a crystal must have an appropriate size and shape. Needle-like crystals are of insufficient size in two dimensions and may require application of seeding techniques using initial crystals as nuclei for larger crystals, but it is often not a straightforward procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maclennan, D. H. and Wong, P. T. (1971) Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 68, 1231–1235.

    Article  CAS  PubMed  Google Scholar 

  2. Yano, K. and Zarain-Herzberg, A. (1994) Sarcoplasmic reticulum calsequestrins: structural and functional properties. Mol. Cell Biochem. 135, 61–70.

    Article  CAS  PubMed  Google Scholar 

  3. Williams R. W. and Beeler, T. J. (1986) Secondary structure of calsequestrin in solutions and in crystals as determined by Raman spectroscopy. J. Biol. Chem. 261, 12,408–12,413.

    CAS  PubMed  Google Scholar 

  4. Maurer, A., Tanaka, M. Ozawa, T., and Fleischer, S. (1985) Purification and crystallization of the calcium binding protein of sarcoplasmic reticulum from skeletal muscle. Proc. Nat. Acad. Sci. USA 82, 4036–4040.

    Article  CAS  PubMed  Google Scholar 

  5. Hayakawa, K., Swenson, L., Baksn, S., Wei, Y., Michalak, M., and Derewenda, Z. S.(1994) Crystallization of canine cardiac calsequestrin. J. Mol. Biol. 235, 357–360.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, S., Trumble, B., Liao, H., Dunker, K., and Kang, C. (1998) Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat. Struct. Biol. 5, 476–48

    Article  CAS  PubMed  Google Scholar 

  7. Krause, K. H. and Michalak, M. (1997) Calreticulin. Cell 88, 439–443.

    Article  CAS  PubMed  Google Scholar 

  8. Maclennan, D. H., Campbell, K. P., and Reithmeier, R. A. F. (1983) Calsequestrin. Calcium and Cell Function 4, 151.

    Article  CAS  Google Scholar 

  9. MacLennan, D. H. and Reithmeier, R. A. (1998) Ion tamers. Nat. Struct. Biol. 5, 409–411.

    Article  CAS  PubMed  Google Scholar 

  10. Rall, J. A. (1996) News Physiol. Sci. 11, 249–255.

    CAS  Google Scholar 

  11. Lytton, J. and MacLennan, D. H. (1992) Sarcoplasmic reticulum, in The Heart and Cardiovascular System. (Fozzard, H. A., Harber, E., Jennings, R. B., Katz, A. M., and Morgan, H. E., eds.), 2nd ed., Raven, New York, pp. 1203–1222.

    Google Scholar 

  12. Mitchell, R. D., Simmerman, H. K. B. and Jones, L. R. (1988) Ca2+binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J. Biol. Chem. 263, 1376–1381.

    CAS  PubMed  Google Scholar 

  13. Guo, W. and Campbell, K. R (1995) Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. J. Biol. Chem. 270, 9027–9030.

    Article  CAS  PubMed  Google Scholar 

  14. Inui, M., Saito, A., and Fleischer, S. (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262, 1740–1747.

    CAS  PubMed  Google Scholar 

  15. Ikemoto, N., Nagy, B., Bhatnagar, G. M., and Gergely, J. (1974) Studies on a metalbinding protein of the sarcoplasmic reticulum. J. Biol. Chem. 249, 2357–2365.

    CAS  PubMed  Google Scholar 

  16. Ostwald, T. J. MacLennan, D. H., and Dorrington, K. J. (1974) Effects of cation binding on the conformation of calsequestrin and the high affinity calcium-binding protein of sarcoplasmic reticulum. J. Biol. Chem. 249, 5867–5871.

    CAS  PubMed  Google Scholar 

  17. Aaron, B. M., Oikawa, K., Reithmeier, R. A., and Sykes B. D. (1984) Characterization of skeletal muscle calsequestrin by 1H NMR spectroscopy. J. Biol. Chem. 259, 11,876–11,881.

    CAS  PubMed  Google Scholar 

  18. He, Z., Dunker, A. K., Wesson, C. R., and Trumble, W. R. (1993) Ca(2+)-induced folding and aggregation of skeletal muscle sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine-binding site. J. Biol. Chem. 268, 24,635–24,641.

    CAS  PubMed  Google Scholar 

  19. Ikemoto, N., Bhatnagar, G. M. Nagy, B., and Gergely, J. (1972) Interaction of divalent cations with the 55,000-dalton protein component of the sarcoplasmic reticulum. Studies of fluorescence and circular dichroism. J. Biol. Chem. 247, 7835–7837.

    CAS  PubMed  Google Scholar 

  20. Cozens, B. and Reithmeier, R. A. (1984) Size and shape of rabbit skeletal muscle calsequestrin. J. Biol. Chem. 259, 6248–6252.

    CAS  PubMed  Google Scholar 

  21. Ohnishi, M. and Rethmeier, R. A. (1987) Fragmentation of rabbit skeletal muscle calsequestrin: spectral and ion binding properties of the carboxyl-terminal region. Biochemistry 26, 7458–7465.

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka, M., Ozawa, T., Maurer, A. M., Cortese, J., and Fleischer, S. (1986) Apparent cooperativity of Ca2+binding associated with crystallization of Ca2+-binding protein from sarcoplasmic reticulum. Arch. Biochem. Biophys. 251, 369–378.

    Article  CAS  PubMed  Google Scholar 

  23. Franzini-Armstrong, C., Kenney, L. J., and Varriano-Marston, E. (1987) The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study. J. Cell Biol. 105, 49–56.

    Article  CAS  PubMed  Google Scholar 

  24. Saito, A., Seiler, S., Chu, A., and Fleischer, S. (1984) Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J. Cell Biol. 99, 875–885.

    Article  CAS  PubMed  Google Scholar 

  25. Maurer, A., Tanaka, M., Ozawa, T., and Fleischer, S. (1985) Purification and crystallization of the calcium binding protein of sarcoplasmic reticulum from skeletal muscle. Proc. Natl. Acad. Sci. USA 82, 4036–4040.

    Article  CAS  PubMed  Google Scholar 

  26. Maguire, P. B., Briggs, F. N., Lennon, N. J., and Ohlendieck, K. (1997) Oligomerization is an intrinsic property of calsequestrin in normal and transformed skeletal muscle. Biochem. Biophys. Res. Commun. 240, 721–727.

    Article  CAS  PubMed  Google Scholar 

  27. Ohgushi, M. and Wada, A. (1983) Molten-globule state: a compact form of globular proteins with mobile side-chains. FEBS Lett. 164, 21–24.

    Article  CAS  PubMed  Google Scholar 

  28. Dolgikh, D. A., Gilmanshin, R. I., Brazhnikov, E. V., Bychkova, V. E., Semisotnov, G. V., Venyaminov, S. Yu., and Ptitsyn, O. B. (1981) Alpha-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett. 136, 311–315.

    Article  CAS  PubMed  Google Scholar 

  29. Ptisyn, O. B. (1995) Molten globule and protein folding. Adv. Protein Chem. 47, 83–229.

    Article  Google Scholar 

  30. McPherson, A. (1990) Current approaches to macromolecular crystallization. Eur. J. Biochem. 189, 1–23.

    Article  CAS  PubMed  Google Scholar 

  31. Jancarik, J. and Kim, S.-H. (1991) Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Cryst. 24, 409–411.

    Article  CAS  Google Scholar 

  32. Fliegel, L., Ohnishi, M., Carpenter, M. R., Khanna, V. K., Reithmeier, R. A. and MacLennan, D. H. (1987) Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc. Natl. Acad. Sci. USA. 84, 1167–1171.

    Article  CAS  PubMed  Google Scholar 

  33. Scott, B. T., Simmerman, H. K., Collins, J. H., Nadal-Ginard, B., and Jones, L. R. (1988) Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J. Biol. Chem. 263, 8958–8964.

    CAS  PubMed  Google Scholar 

  34. Freier R. K. (1976) Aqueous Solutions: Data for Inorganic and Organic Compounds, vol. 1. Walter de Gruyter, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Kang, C., Trumble, W.R., Dunker, A.K. (2002). Crystallization and Structure-Function of Calsequestrin. In: Vogel, H.J. (eds) Calcium-Binding Protein Protocols. Methods in Molecular Biology™, vol 172. Humana Press. https://doi.org/10.1385/1-59259-183-3:281

Download citation

  • DOI: https://doi.org/10.1385/1-59259-183-3:281

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-688-8

  • Online ISBN: 978-1-59259-183-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics