Skip to main content

Ca2+Binding to Proteins Containing γ-Carboxyglutamic Acid Residues

  • Protocol
Book cover Calcium-Binding Protein Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 172))

  • 819 Accesses

Abstract

The family of proteins and natural peptides containing γ-carboxyglutamic acid (Gla) residues has a limited number of members found in such diverse sources as blood plasma, bone tissue, and snail venoms. The best characterized subfamily consists of the so-called vitamin K-dependent plasma proteins found in the blood and is the topic of this chapter. In the conversion of glutamate to Gla, an extra carboxyl group is added post-translationally to the γ-carbon of a restricted number of glutamate residues in the amino-terminal Gla domain, which received its name from this unusual residue, by a vitamin K-dependent carboxylase (1). The carboxylase binds primarily to a propeptide that is cleaved off before secretion of the proteins, but the signal that limits the carboxylation to glutamate residues within the first 40 amino acid residues has not been identified. The Gla-containing plasma proteins have 9-12 Gla residues depending on how many Glu residues are encoded by the two exons covering the first approx 46 residues of the proteins because all Glu residues in this part of the protein become γ-carboxylated. The resulting dicarboxylic Gla residues have significantly higher affinity for Ca2+, compared to the precursor Glu residues, and this ability to chelate Ca2+ions under physiological conditions ([Ca2+]free = 1-1.5 mM in the blood) is pivotal for biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furie, B., Bouchard, B. A., and Furie, B. C. (1999) Vitamin K-dependent biosynthesis of γ-carboxyglutamic acid. Blood 93, 1798–1808.

    CAS  PubMed  Google Scholar 

  2. Kalafatis, M., Swords, N. A., Rand, M. D., and Mann, K. G. (1994) Membranedependent reactions in blood coagulation: role of the vitamin K-dependent enzyme complexes. Biochim. Biophys. Acta 1227, 113–129.

    PubMed  Google Scholar 

  3. Furie, B. and Furie, B. C. (1988) The molecular basis of blood coagulation. Cell 53, 505–518.

    Article  CAS  PubMed  Google Scholar 

  4. Stenflo, J., Selander, M., Persson, E., Astermark, J., Valcarce, C., and Drakenberg, T. (1993) Calcium binding properties of vitamin K-dependent clotting factors, in Current Aspects of Blood Coagulation, Fibrinolysis, and Platelets (Shen, M. -C. and Takada, A., eds.), Springer-Verlag, Tokyo, pp. 3–13.

    Google Scholar 

  5. Stenflo, J. and Ganrot, P.-O. (1973) Binding of Ca2+to normal and dicoumarolinduced prothrombin. Biochem. Biophys. Res. Commun. 50, 98–104.

    Article  CAS  PubMed  Google Scholar 

  6. Henriksen, R. A. and Jackson, C. M. (1975) Cooperative calcium binding by the phospholipid binding region of bovine prothrombin: a requirement for intact disulfide bridges. Arch. Biochem. Biophys. 170, 149–159.

    Article  CAS  PubMed  Google Scholar 

  7. Stenflo, J., Fernlund, P., Egan, W., and Roepstorff, P. (1974) Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc. Natl. Acad. Sci. USA 71, 2730–2733.

    Article  CAS  PubMed  Google Scholar 

  8. Nelsestuen, G. L., Zytkovicz, T. H., and Howard, J. B. (1974) The mode of action of vitamin K. Identification of γ-carboxyglutamic acid as a component of prothrombin. J. Biol. Chem. 249, 6347–6350.

    CAS  PubMed  Google Scholar 

  9. Nelsestuen, G. L. (1976) Role of γ-carboxyglutamic acid. An unusual protein transition required for the calcium-dependent binding of prothrombin to phospholipid. J. Biol. Chem. 251, 5648–5656.

    CAS  PubMed  Google Scholar 

  10. Bloom, J. W. and Mann, K. G. (1978) Metal ion induced conformational transitions of prothrombin and prothrombin fragment 1. Biochemistry 17, 4430–4438.

    Article  CAS  PubMed  Google Scholar 

  11. Astermark, J., Björk, I., Ohlin, A.-K., and Stenflo, J. (1991) Structural requirements for Ca2+binding to the γ-carboxyglutamic acid and epidermal growth factorlike regions of factor IX. Studies using intact domains isolated from controlled proteolytic digests of bovine factor IX. J. Biol. Chem. 266, 2430–2437.

    CAS  PubMed  Google Scholar 

  12. Persson, E., Björk, I., and Stenflo, J. (1991) Protein structural requirements for Ca2+binding to the light chain of factor X. Studies using isolated intact fragments containing the γ-carboxyglutamic acid region and/or the epidermal growth factorlike domains. J. Biol. Chem. 266, 2444–2452.

    CAS  PubMed  Google Scholar 

  13. Schwalbe, R. A., Ryan, J., Stern, D. M., Kisiel, W., Dahlbäck, B., and Nelsestuen, G. L. (1989) Protein structural requirements and properties of membrane binding by γ-carboxyglutamic acid-containing plasma proteins and peptides. J. Biol. Chem. 264, 20,288–20,296.

    CAS  PubMed  Google Scholar 

  14. Öhlin, A.-K., Björk, I., and Stenflo, J. (1990) Proteolytic formation and properties of a fragment of protein C containing the γ-carboxyglutamic acid rich domain and the EGF-like region. Biochemistry 29, 644–651.

    Article  PubMed  Google Scholar 

  15. Persson, E. and Stenflo, J. (1992) Comparison of the Ca2+binding properties of the γ-carboxyglutamic acid-containing module of protein Z in the intact protein and in N-terminal fragments. FEBS Lett. 314, 5–9.

    Article  CAS  PubMed  Google Scholar 

  16. Colpitts, T. L. and Castellino, F. J. (1994) Calcium and phospholipid binding properties of synthetic γ-carboxyglutamic acid-containing peptides with sequence counterparts in human protein C. Biochemistry 33, 3501–3508.

    Article  CAS  PubMed  Google Scholar 

  17. Colpitts, T. L., Prorok, M., and Castellino, F. J. (1995) Binding of calcium to individual γ-carboxyglutamic acid residues of human protein C. Biochemistry 34, 2424–2430.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, L., Jhingan, A., and Castellino, F. J. (1992) Role of individual γ-carboxyglutamic acid residues of activated human protein C in defining its in vitro anticoagulant activity. Blood 80, 942–952.

    CAS  PubMed  Google Scholar 

  19. Ratcliffe, J. V., Furie, B., and Furie, B. C. (1993) The importance of specific γ-carboxyglutamic acid residues in prothrombin. Evaluation by site-specific mutagenesis. J. Biol. Chem. 268, 24,339–24,345.

    CAS  PubMed  Google Scholar 

  20. Soriano-Garcia, M., Padmanabhan, K., de Vos, A. M., and Tulinsky, A. (1992) The Ca2+ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry 31x31, 2554–2566.

    Article  Google Scholar 

  21. Skogen, W. F., Esmon, C. T., and Cox, A. C. (1984) Comparison of coagulation factor Xa and des-(1-44)factor Xa in the assembly of prothrombinase. J. Biol. Chem. 259, 2306–2310.

    CAS  PubMed  Google Scholar 

  22. Freedman, S. J., Furie, B. C., Furie, B., and Baleja, J. D. (1995) Structure of the metal-free γ-carboxyglutamic acid-rich membrane binding region of factor IX by two-dimensional NMR spectroscopy. J. Biol. Chem. 270, 7980–7987.

    Article  CAS  PubMed  Google Scholar 

  23. Freedman S. J., Furie, B. C., Furie, B. and Baleja, J. D. (1995) Structure of the calcium ion-bound γ-carboxyglutamic acid-rich domain of factor IX. Biochemistry 34, 12,126–12,137.

    Article  CAS  PubMed  Google Scholar 

  24. Sunnerhagen, M., Forsén, S., Hoffrén, A.-M., Drakenberg, T., Teleman, O., and Stenflo, J. (1995) Structure of the Ca2+-free Gla domain sheds light on membrane binding of blood coagulation proteins. Nat. Struct. Biol. 2, 504–509.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, L. and Castellino, F. J. (1994) The binding energy of human coagulation protein C to acidic phospholipid vesicles contains a major contribution from leucine 5 in the γ-carboxyglutamic acid domain. J. Biol. Chem. 269, 3590–3595.

    CAS  PubMed  Google Scholar 

  26. Christiansen, W. T., Jalbert, L. R., Robertson, R. M., Jhingan, A., Prorok, M., and Castellino, F. J. (1995) Hydrophobic amino acid residues of human anticoagulation protein C that contribute to its functional binding to phospholipid vesicles. Biochemistry 34, 10,376–10,382.

    Article  CAS  PubMed  Google Scholar 

  27. Freedman, S. J., Blostein, M. D., Baleja, J. D., Jacobs, M., Furie, B. C., and Furie, B. (1996) Identification of the phospholipid binding site in the vitamin K-depen-dent blood coagulation protein factor IX. J. Biol. Chem. 271, 16,227–16,236.

    Article  CAS  PubMed  Google Scholar 

  28. Borowski, M., Furie, B. C., Bauminger, S., and Furie, B. (1986) Prothrombin requires two sequential metal-dependent conformational transitions to bind phospholipid. J. Biol. Chem. 261, 14,969–14,975.

    CAS  PubMed  Google Scholar 

  29. Liebman, H. A., Furie, B. C., and Furie, B. (1987) The factor IX phospholipidbinding site is required for calcium-dependent activation of factor IX by factor XIa. J. Biol. Chem. 262, 7605–7612.

    CAS  PubMed  Google Scholar 

  30. Persson, E. and Petersen, L. C. (1995) Structurally and functionally distinct Ca2+binding sites in the γ-carboxyglutamic acid-containing domain of factor VIIa. Eur. J. Biochem. 234, 293–300.

    Article  CAS  PubMed  Google Scholar 

  31. Keyt, B., Furie, B. C., and Furie, B. (1982) Structural transitions in bovine factor X associated with metal binding and zymogen activation. Studies using conformation-specific antibodies. J. Biol. Chem. 257, 8687–8695.

    CAS  PubMed  Google Scholar 

  32. Morita, T., Isaacs, B. S., Esmon, C. T., and Johnson, A. E. (1984) Derivatives of blood coagulation factor IX contain a high affinity Ca2+-binding site that lacks γ-carboxyglutamic acid. J. Biol. Chem. 259, 5698–5704.

    CAS  PubMed  Google Scholar 

  33. Morita, T. and Kisiel, W. (1985) Calcium binding to a human factor IXa derivative lacking γ-carboxyglutamic acid: evidence for two high-affinity sites that do not involve β-hydroxyaspartic acid. Biochem. Biophys. Res. Commun. 130, 841–847.

    Article  CAS  PubMed  Google Scholar 

  34. Johnson, A. E., Esmon, N. L., Laue, T. M., and Esmon, C. T. (1983) Structural changes required for activation of protein C are induced by Ca2+binding to a high affinity site that does not contain γ-carboxyglutamic acid. J. Biol. Chem. 258, 5554–5560.

    CAS  PubMed  Google Scholar 

  35. Cooke, R. M., Wilkinson, A. J., Baron, M., Pastore, A., Tappin, M. J., Campbell, I. D., Gregory, H., and Sheard, B. (1987) The solution structure of human epidermal growth factor. Nature 327, 339–341.

    Article  CAS  PubMed  Google Scholar 

  36. Öhlin, A.-K., Linse, S., and Stenflo, J. (1988) Calcium binding to the epidermal growth factor homology region of protein C. J. Biol. Chem. 263, 7411–7417.

    PubMed  Google Scholar 

  37. Persson, E., Selander, M., Linse, S., Drakenberg, T., Öhlin, A.-K., and Stenflo, J. (1989) Calcium binding to the isolated β-hydroxyaspartic acid-containing epidermal growth factor-like domain of bovine factor X. J. Biol. Chem. 264, 16,897–16,904.

    CAS  PubMed  Google Scholar 

  38. Handford, P. A., Baron, M., Mayhew, M., Willis, A., Beesley, T., Brownlee, G. G., and Campbell, I. D. (1990) The first EGF-like domain from human factor IX contains a high-affinity calcium binding site. EMBO J. 9, 475–480.

    CAS  PubMed  Google Scholar 

  39. Persson, E., Hogg, P. J., and Stenflo, J. (1993) Effects of Ca2+binding on the protease module of factor Xa and its interaction with factor Va. Evidence for two Glaindependent Ca2+-binding sites in factor Xa. J. Biol. Chem. 268, 22,531–22,539.

    CAS  PubMed  Google Scholar 

  40. Valcarce, C., Selander-Sunnerhagen, M., Tämlitz, A.-M., Drakenberg, T., Björk, I., and Stenflo, J. (1993) Calcium affinity of the NH2-terminal epidermal growth factor-like module of factor X. Effect of the γ-carboxyglutamic acid-containing module. J. Biol. Chem. 268, 26,673–26,678.

    CAS  PubMed  Google Scholar 

  41. Handford, P. A., Mayhew, M., Baron, M., Winship, P. R., Campbell, I. D., and Brownlee, G. G. (1991) Key residues involved in calcium-binding motifs in EGF-like domains. Nature 351, 164–167.

    Article  CAS  PubMed  Google Scholar 

  42. Selander-Sunnerhagen, M., Ullner, M., Persson, E., Teleman,., Stenflo, J., and Drakenberg, T. (1992) How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J. Biol. Chem. 267, 19,642–19,649.

    CAS  PubMed  Google Scholar 

  43. Rao, Z., Handford, P., Mayhew, M., Knott, V., Brownlee, G. G., and Stuart, D. (1995) The structure of a Ca2+-binding epidermal growth factor-like domain: Its role in protein-protein interactions. Cell 82, 131–141.

    Article  CAS  PubMed  Google Scholar 

  44. Selander-Sunnerhagen, M., Persson, E., Dahlqvist, I., Drakenberg, T., Stenflo, J., Mayhew, M., et al. (1993) The effect of aspartate hydroxylation on calcium binding to epidermal growth factor-like modules in coagulation factors IX and X. J. Biol. Chem. 268, 23,339–23,344.

    CAS  Google Scholar 

  45. Banner, D. W., D’Arcy, A., Chène, C., Winkler, F. K., Guha, A., Konigsberg, W. H., et al. (1996) The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature 380, 41–46.

    Article  CAS  PubMed  Google Scholar 

  46. Dahlbäck, B., Hildebrand, B., and Linse, S. (1990) Novel type of very high affinity calcium-binding sites in β-hydroxyasparagine-containing epidermal growth factorlike domains in vitamin K-dependent protein S. J. Biol. Chem. 265, 18,481–18,489.

    PubMed  Google Scholar 

  47. Stenberg, Y., Linse, S., Drakenberg, T., and Stenflo, J. (1997) The high affinity calcium-binding sites in the epidermal growth factor module region of vitamin K-dependent protein S. J. Biol. Chem. 272, 23,255–23,260.

    Article  CAS  PubMed  Google Scholar 

  48. Stenberg Y., Julenius, K., Dahlqvist, I., Drakenberg, T., and Stenflo, J. (1997) Calcium-binding properties of the third and fourth epidermal-growth-factor-like modules in vitamin-K-dependent protein S. Eur. J. Biochem. 248, 163–170.

    Article  CAS  PubMed  Google Scholar 

  49. Sunnerhagen, M., Olah, G.A., Stenflo, J., Forsén, S., Drakenberg, T., and Trewhella, J. (1996) The relative orientation of Gla and EGF domains in coagulation factor X is altered by Ca2+binding to the first EGF domain. A combined NMR-small angle x-ray scattering study. Biochemistry 35, 11,547–11,559.

    Article  CAS  PubMed  Google Scholar 

  50. Kelly, C. R., Dickinson, C. D., and Ruf, W. (1997) Ca2+binding to the first epidermal growth factor module of coagulation factor VIIa is important for cofactor interaction and proteolytic function. J. Biol. Chem. 272, 17,467–17,472.

    Article  CAS  PubMed  Google Scholar 

  51. Persson, E., Olsen, O. H., Østergaard, A., and Nielsen, L. S. (1997) Ca2+binding to the first epidermal growth factor-like domain of factor VIIa increases amidolytic activity and tissue factor affinity. J. Biol. Chem. 272, 19,919–19,924.

    Article  CAS  PubMed  Google Scholar 

  52. Bode, W. and Schwager, P. (1975) The single calcium-binding site of crystalline β-trypsin. FEBS Lett. 56, 139–143.

    Article  CAS  PubMed  Google Scholar 

  53. Bode, W. and Schwager, P. (1975) The refined crystal structure of bovine β-trypsin at 1.8 Å resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. J. Mol. Biol. 98, 693–717.

    Article  CAS  PubMed  Google Scholar 

  54. Rezaie, A. R., Esmon, N. L., and Esmon, C. T. (1992) The high affinity calciumbinding site involved in protein C activation is outside the first epidermal growth factor homology domain. J. Biol. Chem. 267, 11,701–11,704.

    CAS  PubMed  Google Scholar 

  55. Rezaie, A. R., Neuenschwander, P. F., Morrissey, J. H., and Esmon, C. T. (1993) Analysis of the functions of the first epidermal growth factor-like domain of factor X. J. Biol. Chem. 268, 8176–8180.

    CAS  PubMed  Google Scholar 

  56. Bajaj, S. P., Sabharwal, A. K., Gorka, J., and Birktoft, J. J. (1992) Antibody-probed conformational transitions in the protease domain of human factor IX upon calcium binding and zymogen activation: putative high-affinity Ca2+binding site in the protease domain. Proc. Natl. Acad. Sci. USA 89, 152–156.

    Article  CAS  PubMed  Google Scholar 

  57. Wildgoose, P., Foster, D., Schiødt, J., Wiberg, F. C., Birktoft, J. J., and Petersen, L. C. (1993) Identification of a calcium binding site in the protease domain of human blood coagulation factor VII: evidence for its role in factor VII-tissue factor interaction. Biochemistry 32, 114–119.

    Article  CAS  PubMed  Google Scholar 

  58. Brandstetter, H., Kühne, A., Bode, W., Huber, R., von der Saal, W., Wirthensohn, K. and Engh, R. A. (1996) X-ray structure of active site-inhibited clotting factor Xa. Implications for drug design and substrate recognition. J. Biol. Chem. 271, 29,988–29,992.

    Article  CAS  PubMed  Google Scholar 

  59. Kamata, K., Kawamoto, H., Honma, T., Iwama, T., and Kim, S.-H. (1998) Structural basis for chemical inhibition of human blood coagulation factor Xa. Proc. Natl. Acad. Sci. USA 95, 6630–6635.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, E., Charles, R. S., and Tulinsky, A. (1999) Structure of extracellular tissue factor complexed with factor VIIa inhibited with a BPTI mutant. J. Mol. Biol. 285, 2089–2104.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Persson, E. (2002). Ca2+Binding to Proteins Containing γ-Carboxyglutamic Acid Residues. In: Vogel, H.J. (eds) Calcium-Binding Protein Protocols. Methods in Molecular Biology™, vol 172. Humana Press. https://doi.org/10.1385/1-59259-183-3:081

Download citation

  • DOI: https://doi.org/10.1385/1-59259-183-3:081

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-688-8

  • Online ISBN: 978-1-59259-183-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics