Skip to main content

Calcium-Binding Proteins

  • Protocol
Calcium-Binding Protein Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 172))

Abstract

Calcium plays an important role in many biological processes. At first, it might seem that the most important role of calcium in biology is a structural one, and indeed it may be argued that this is true. Hydroxyapatite, a co-crystal of calcium, phosphate, and hydroxide ions, forms the matrix of tooth enamel, the hardest substance in the human body. Calcium phosphate is also responsible for the rigidity of bone, and the deposition of this matrix in bone is a very tightly controlled biological process (1). In fact, the vast majority of calcium (more than 99%) is immobilized in bones and teeth in humans. Poor diet or improper regulation of calcium deposition can lead to diseases such as childhood rickets or osteoporosis in older adults. Moreover, calcium is also important structurally in other organisms; for example, calcium carbonate is the major component of egg shells and also of the exoskeleton of animals such as mollusks and barnacles. Nutritionally, calcium is found in many foods, but of course the major source in most human diets is dairy products. In milk, a predominant class of proteins is the caseins, which function to solubulize calcium phosphate microgranules by surrounding them in a micellar structure (2), providing an important mineral nutrient in liquid form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bronner, F. and Petpulik, M. (1992) Extra-and intracellular calcium and phosphate regulation in: Basic Research to Clinical Medicine, CRC Press, Boca Raton, Florida.

    Google Scholar 

  2. Holt, C. (1992) Structure and stability of bovine casein micelles. Adv. Protein Chem. 43, 63–151.

    Article  CAS  PubMed  Google Scholar 

  3. Nelsestuen, G. L. and Gaul Ostrowski, B. (1999) Membrane association with multiple calcium ions: vitamin-K-dependent proteins, annexins and pentraxins. Curr. Opin. Struct. Biol. 9, 433–437.

    Article  CAS  PubMed  Google Scholar 

  4. Sunnerhagen, M., Forsén, S., Hofren, A. M., Drakenberg, T., Teleman, O., and Stenflo, J. (1995) Structure of the Ca2+-free Gla domain sheds light on membrane binding of blood coagulation proteins. Nat. Struct. Biol. 2, 504–509. Erratum (1996) Nat. Struct. Biol. 3,103.

    Article  Google Scholar 

  5. Selander-Sunnerhagen, M., Ullner, M., Persson, E., Teleman, O., Stenflo, J., and Drakenberg, T. (1992) How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J. Biol. Chem. 267, 19,642–19,649.

    CAS  PubMed  Google Scholar 

  6. Maurer, P., E., and Engel, J. (1996) Extracellular calcium-binding proteins. Curr. Opin. Cell Biol. 8, 609–617.

    Article  CAS  PubMed  Google Scholar 

  7. Downing, A. K., Knott, V., Werner, J. M., Cardy, C. M., Campbell, I. D., and Handford, P. A. (1996) Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Cell 85, 597–605.

    Article  CAS  PubMed  Google Scholar 

  8. Muranyi, A., Finn, B. E., Gippert, G. P., Forsen, S., Stenflo, J., and Drakenberg, T. (1998) Solution structure of the N-terminal domain from human factor VII. Biochemistry 37, 10,605–10,615.

    Article  CAS  PubMed  Google Scholar 

  9. McKenzie, H. A. and White, F. H., Jr. (1991) Lysozyme and α-lactalbumin: struc-ture, function, and interrelationships. Adv. Protein Chem. 41, 173–315.

    Article  CAS  PubMed  Google Scholar 

  10. Aramini, J. M., Drakenberg, T., Hiraoki, T., Ke,Y., K., and Vogel, H. J. (1992) Calcium-43 NMR studies of calcium-binding lysozymes and α-lactalbumins. Biochemistry 31, 6761–6768.

    Article  CAS  PubMed  Google Scholar 

  11. Aramini, J. M., Hiraoki, T., Nitta, K., and Vogel, H. J. (1995) Admium-113 NMR studies of metal ion binding to bovine and human a-lactalbumin and equine lysozyme. J. Biochem. 117, 623–238.

    CAS  PubMed  Google Scholar 

  12. Pan, C. Q. and Lazarus, R. A. (1999) Ca2+-dependent activity of human DNase I and its hyperactive variants. Protein Sci. 8, 1780–1788.

    Article  CAS  PubMed  Google Scholar 

  13. Smith, C. A., Toogood, H. S., Baker, H. M., Daniel, R. M., and Baker, E. N. (1999) Calcium-mediated thermostability in the subtilisin superfamily: the crys-tal structure of Bacillus Ak. 1 protease at 1.8 Å resolution. J. Mol. Biol. 294, 1027–1040.

    Article  CAS  PubMed  Google Scholar 

  14. Hosfield, C. M., Elce, J. S., Davies, P. L., and Jia, Z. (1999) Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation. EMBO J. 24, 6880–6889.

    Article  Google Scholar 

  15. Strobl, S., Fernandez-Catalan, C., Braun, M., Huber, R., Masumoto, H., Nakagawa, K., Irie, A., Sorimachi, H., Bourenkow, G., Bartunik, H., Suzuki, K., and Bode, W. (2000) The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc. Natl. Acad. Sci. USA 97, 588–592.

    Article  CAS  PubMed  Google Scholar 

  16. Yin, H. L. and Stossel, T. P. (1980) Purification and structural properties of gelsolin, a Ca2+-activated regulatory protein of macrophages. J. Biol. Chem. 255, 9490–9493.

    CAS  PubMed  Google Scholar 

  17. Nunnally, M. H., Powell, L. D., and Craig, S. W. (1981) Reconstitution and regula-tion of actin gel-sol transformation with purified filamin and villin. J. Biol. Chem. 256, 2083–2086.

    CAS  PubMed  Google Scholar 

  18. Maekawa, S. and Sakai, H. (1990) Inhibition of actin regulatory activity of the 74-kDa protein from bovine adrenal medulla (adseverin) by some phospholipids. J. Biol. Chem. 265, 10,940–10,942.

    CAS  PubMed  Google Scholar 

  19. Yin, H. L. and Stossel, T. P. (1979) Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281, 583–586.

    Article  CAS  PubMed  Google Scholar 

  20. Burtnick, L. D., Koepf, E. K., Grimes, J., Jones, E. Y., Stuart, D. I., McLaughlin, P. J., and Robinson, R. C. (1997) The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation. Cell 90, 661–670.

    Article  CAS  PubMed  Google Scholar 

  21. Robinson, R. C., Mejillano, M., Le, V. P., Burtnick, L. D., Yin, H. L., and Choe, S. (1999) Domain movement in gelsolin: a calcium-activated switch. Science 286, 1939–1942.

    Article  CAS  PubMed  Google Scholar 

  22. Vogel, H. J. (1994) Calmodulin: a versatile calcium mediator protein. Biochem. Cell Biol. 72, 357–376.

    Article  CAS  PubMed  Google Scholar 

  23. Means, A. R., VanBerkum, M. F. A., Bagchi, I., Lu, K. P., and Rasmussen, C. D. (1991) Regulatory functions of calmodulin. Pharmac. Ther. 50, 255–270.

    Article  CAS  Google Scholar 

  24. Williams, R. J. P. (1992) Calcium fluxes in cells: new view on their significance. Cell Calcium 20, 87–93.

    Article  Google Scholar 

  25. FraĂşsto da Silva, J. J. R. and Williams, R. J. P. (1991) The Biological Chemistry of the Elements. Oxford University Press, Toronto.

    Google Scholar 

  26. Lippard, S. J. and Berg, J. M (1994) Principles of Bioinorganic Chemistry. Univer-sity Science Books, Mill Valley, CA.

    Google Scholar 

  27. Dubois, T., Oudinet, J. P., Mira, J. P., and Russo-Marie, F. (1996) Annexins and protein kinases C. Biochim. Biophys. Acta 1313, 290–294.

    Article  PubMed  Google Scholar 

  28. Nalepski, E. A. and Falke, J. J. (1996) The C2 domain calcium-binding motif: struc-tural and functional diversity. Protein Sci. 5, 2375–2390.

    Article  Google Scholar 

  29. Rizo, J. and Südhof, T. C. (1998) C2-domains, structure and function of auniversal Ca2+-binding domain. J. Biol. Chem. 273, 15,879–15,0882.

    Article  CAS  PubMed  Google Scholar 

  30. Strynadka, N. C. J. and James, M. N. G. (1989) Structures of the helix-loop-helix calcium binding proteins. Annu. Rev. Biochem. 58, 951–998.

    Article  CAS  PubMed  Google Scholar 

  31. Ikura, M. (1996) Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 21, 14–17.

    CAS  PubMed  Google Scholar 

  32. Kawasaki, H., Nakayama, S., and Kretsinger, R. H. (1998) Classification and evolution of EF-hand proteins. Biometals 11, 277–295.

    Article  CAS  PubMed  Google Scholar 

  33. Kretsinger, R. H. and Nockolds, C. E. (1973) Carp muscle calcium-binding protein II. Structure determination and general description. J. Biol. Chem. 248, 3313–3326.

    CAS  PubMed  Google Scholar 

  34. Vijay-Kumar, S., and Cook, W. J. (1992) Structure of a sarcoplasmic calcium-bind-ing protein from Nereis diversicolor refined at 2.0 Å resolution. J. Mol. Biol. 224, 413–426.

    Article  CAS  PubMed  Google Scholar 

  35. Tanaka, T., Ames, J. B., Harvey, T. S., Stryer, L., and Ikura, M. (1995) Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376, 444–447

    Article  CAS  PubMed  Google Scholar 

  36. Smith, S. P. and Shaw, G. S. (1998) A change in hand mechanism for S100 signalling. Biochem. Cell Biol. 76, 324–333.

    Article  CAS  PubMed  Google Scholar 

  37. Heizmann, C. W. and Cox, J. A. (1998) New perspectives on S100 proteins: a multifunctional Ca2+-, Zn2+-, and Cu2+-binding protein family. Biometals 11, 383–397.

    Article  CAS  PubMed  Google Scholar 

  38. Donato, R. (1999) Functional roles of S100 proteins, calcium binding proteins of the EF-hand type. Biochim. Biophys. Acta 1450, 191–231.

    Article  CAS  PubMed  Google Scholar 

  39. Haeseleer, F., Sokal, I., Verlinde, C. L. M., Erdjument-Bromage, H., Tempst, P., Pronin, A. N., et al. (2000) Five members of a novel Ca2+-binding protein (CABP) subfamily with similarity to calmodulin. J. Biol. Chem. 275, 1247–1260.

    Article  CAS  PubMed  Google Scholar 

  40. Méhul, B., Bernard, D., Simonetti, L., Bernard, M. A., and Schmidt, R. (2000) Identification and cloning of a new calmodulin-like protein from human epidermis. J. Biol. Chem. 275, 12,841–12,847.

    Article  PubMed  Google Scholar 

  41. Farah, C. S. and Reinach, F. C. (1995) The troponin complex and regulation of muscle contraction. FASEB J. 9, 755–767.

    CAS  PubMed  Google Scholar 

  42. Gagné, S. M., Li, M. X., McKay, R. T., and Sykes, B. D. (1998) The NMR angle on troponin C. Biochem. Cell Biol. 76, 302–312.

    Article  PubMed  Google Scholar 

  43. Filatov, V. L., Katrukha, A. G., Bulargina, T. V., and Gusev, N. B. (1999) Troponin: structure, properties, and mechanism of functioning. Biochemistry (Moscow) 64, 1155–1174 (translated from Russian).

    Google Scholar 

  44. Zhang, M. and Yuan, T. (1998) Molecular mechanisms of calmodulin’s functional versatility. Biochem. Cell Biol. 76, 313–323.

    Article  CAS  PubMed  Google Scholar 

  45. Crivici, A. and Ikura, M. (1995) Molecular and structural basis of target recognition by calmodulin. Annu. Rev. Biophys. Biomol. Struct. 24, 85–116.

    Article  CAS  PubMed  Google Scholar 

  46. Babu, Y. S., Bugg, C. E., and Cook, W. J. (1988) Structure of calmodulin refined at 2.2 Å resolution. J. Mol. Biol. 204, 191–204.

    Article  CAS  PubMed  Google Scholar 

  47. Chattopadhyaya, R., Meador, W. E., and Means, A. R. (1992) Calmodulin structure refined at 1.7 Å resolution. J. Mol. Biol. 228, 1177–1192.

    Article  CAS  PubMed  Google Scholar 

  48. Heidorn, D. B. and Trewhella, J. (1988) Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry 27, 909–915.

    Article  CAS  PubMed  Google Scholar 

  49. Ikura. M., Spera, S., Barbato G., Kay L.E., Krinks M., and Bax, A. (1991) Secondary structure and side-chain 1H and 13C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy. Biochemistry 30, 9216–9228.

    Article  CAS  PubMed  Google Scholar 

  50. Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W., and Bax, A. (1992) Backbone dynamics of calmodulin studied by 15N inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31, 5269–5278.

    Article  CAS  PubMed  Google Scholar 

  51. Strynadka, N. C. J. and James, M. N. G. (1989) Structures of the helix-loop-helix calcium binding proteins. Annu. Rev. Biochem. 58, 951–998.

    Article  CAS  PubMed  Google Scholar 

  52. Marsden, B. J., Shaw, G. S., and Sykes, B. D. (1990) Calcium binding proteins. Elucidating the contributions to calcium affinity from an analysis of species variants and peptide fragments. Biochem. Cell Biol. 68, 587–601.

    Article  CAS  PubMed  Google Scholar 

  53. Reid, R. E., Gariépy, J., Saund, A. K., and Hodges, R. S. (1981) Calcium-induced protein folding. Structure-affinity relationships in synthetic analogs of the helix-loop-helix calcium binding unit. J. Biol. Chem. 256, 2742–2751.

    CAS  PubMed  Google Scholar 

  54. Gariépy, J., Sykes, B. D., Reid, R. E., and Hodges, R. S. (1982) Proton nuclear magnetic resonance investigation of synthetic calcium binding peptides. Biochemistry 21, 1506–1512.

    Article  PubMed  Google Scholar 

  55. Andersson A., Forsén, S., Thulin, E., and Vogel, H. J. (1983a) Cadmium-113 nuclear magnetic resonance studies of proteolytic fragments of calmodulin: assignment of strong and weak cation binding sites. Biochemistry 22, 2309–2313.

    Article  CAS  PubMed  Google Scholar 

  56. Brokx, R., D. and Vogel, H. J. (2000) Peptide and metal ion dependent association of isolated helix-loop-helix calcium binding domains: studies of thrombic fragments of calmodulin. Protein Set 9, 964–975.

    Article  CAS  Google Scholar 

  57. Kuboniwa, H., Tjandra, N., Grzesiek, S., Ren, H., Klee, C. B., and Bax, A. (1995) Solution structure of calcium-free calmodulin. Nat. Struct. Biol. 2, 768–776.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, M., Tanaka, T., and Ikura, M. (1995) Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat. Struct. Biol. 2, 758–762.

    Article  CAS  PubMed  Google Scholar 

  59. Rhoads, A. R. and Friedberg, F. (1997) Sequence motifs for calmodulin recognition. FASEB J. 11, 331–340.

    CAS  PubMed  Google Scholar 

  60. Zhang, M. and Vogel, H. J. (1997) Interaction of a partial calmodulin-binding domain of caldesmon with calmodulin. Prot. Pept. Lett. 4, 291–297.

    CAS  Google Scholar 

  61. Yuan T. and Vogel H. J. (1998) Calcium-calmodulin-induced dimerization of the carboxyl-terminal domain from petunia glutamate decarboxylase. A novel calmodulin-peptide interaction motif. J. Biol. Chem. 273, 30,328–30,335.

    Article  CAS  PubMed  Google Scholar 

  62. Ikura, M., Clore, M., Gronenborn, A. M., Zhu, G., Klee, C. B., and Bax, A. (1992) Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256, 632–638.

    Article  CAS  PubMed  Google Scholar 

  63. Meador, W. E., Means, A. R., and Quiocho, F. A. (1992) Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257, 1251–1255.

    Article  CAS  PubMed  Google Scholar 

  64. Meador, W. E., Means, A. R., and Quiocho, F. A. (1993) Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 262, 1718–1721.

    Article  CAS  PubMed  Google Scholar 

  65. Elshorst, B., Hennig, M., Forsterling, H., Diener, A., Maurer, M., Schulte, P., et al. (1999) NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+pump. Biochemistry 38, 12,320–12,332.

    Article  CAS  PubMed  Google Scholar 

  66. Osawa, M., Tokomitsu, H., Swindells, M. B., Kurihara, H., Orita, M., Shibanuma, T., et al. (1999) A novel calmodulin target recognition revealed by its NMR structure in complex with a peptide derived from Ca2+-calmodulin dependent protein kinase kinase. Nat. Struct. Biol. 6, 819–824.

    Article  CAS  PubMed  Google Scholar 

  67. Vogel, H. J. and Zhang, M. (1995) Protein engineering and NMR studies of calmodulin Mol. Cell Biochem. 149-150, 3–15.

    Article  CAS  PubMed  Google Scholar 

  68. Yuan, T., Ouyang, H., and Vogel, H. J. (1999) Surface exposure of the methionine side chains of calmodulin in solution. J. Biol. Chem. 274, 8411–8420.

    Article  CAS  PubMed  Google Scholar 

  69. Goldberg, J., Nairn, A. C., and Kuriyan, J. (1996) Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell 84, 875–887.

    Article  CAS  PubMed  Google Scholar 

  70. Koradi, R., Billeter, M., and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 29–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Vogel, H.J., Brokx, R.D., Ouyang, H. (2002). Calcium-Binding Proteins. In: Vogel, H.J. (eds) Calcium-Binding Protein Protocols. Methods in Molecular Biology™, vol 172. Humana Press. https://doi.org/10.1385/1-59259-183-3:003

Download citation

  • DOI: https://doi.org/10.1385/1-59259-183-3:003

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-688-8

  • Online ISBN: 978-1-59259-183-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics