Crystal Structure of Calpain and Insights into Ca2+-Dependent Activation

  • Zongchao Jia
  • Christopher M. Hosfield
  • Peter L. Davies
  • John S. Elce
Part of the Methods in Molecular Biology™ book series (MIMB, volume 172)


Calpains are the only known enzymes that combine protease activity with a dependence on Ca2+-binding to EF-hands in one molecule. The μ- and m-calpains are cytosolic cysteine proteases that are ubiquitously expressed and differ in their sensitivity to Ca2+. They consist of an isoform-specific catalytic approx 80-kDa subunit and a common regulatory approx 28-kDa subunit. Although the exact physiological roles of calpains remain to be elucidated, their functional characteristics and wide distribution suggest that they have important cellular roles, which have been reviewed elsewhere (1-4).


Cysteine Protease Catalytic Subunit Regulatory Subunit Catalytic Triad Thiol Protease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sorimachi, H., Ishiura, S., and Suzuki, K. (1997) Structure and physiological functio of calpains. Biochem. J. 328, 721–732.PubMedGoogle Scholar
  2. 2.
    Molinari, M. and Carafoli, E. (1997) Calpain: a cytosolic proteinase active at the membranes. J. Membrane Biol. 156x156, 1–8.CrossRefGoogle Scholar
  3. 3.
    Ono, Y., Sorimachi, H., and Suzuki, K. (1998) Structure and physiology of calpain, an enigmatic protease. Biochem. Biophys. Res. Commun. 245, 289–294.CrossRefPubMedGoogle Scholar
  4. 4.
    Carafoli, E. and Molinari, M. (1998) Calpain: a protease in search of a function. Biochem. Biophys. Res. Commun. 247, 193–203.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang, K. K. W. and Yuen, P.-W. (1997) Development and therapeutic potential of calpain inhibitors. Adv. Pharmacol. 37, 117–152.CrossRefPubMedGoogle Scholar
  6. 6.
    Elce, J. S. (2000) Expression of m-Calpain in E. coli, in Methods in Molecular Biology, vol. 144: Calpain Methods and Protocols (Elce, J. S., ed.), Humana Press, Totowa, NJ, pp. 47–54.CrossRefGoogle Scholar
  7. 7.
    Hosfield, C. M., Ye, Q., Arthur, J. S. C., Hegadorn, C., Croall, D. E., Elce, J. S., and Jia, Z. (1999) Crystallization and X-ray crystallographic analysis of m-calpain: a Ca2+-dependent protease. Acta Crystallogr. D55, 1484–1486.Google Scholar
  8. 8.
    Khan, A. R. and James, M. N. G. (1998) Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 7, 815–836.CrossRefPubMedGoogle Scholar
  9. 9.
    Jing, H., Macon, K. J., Moore, D., DeLucas, L. J., Volanakis, J. E., and Narayana, S. V. L. (1999) Structural basis of profactor D activation: from a highly flexible zymogen to a novel self-inhibited serine protease, complement factor D. EMBO J. 18, 804–814.CrossRefPubMedGoogle Scholar
  10. 10.
    Bernstein, N. K., Cherney, M. M., Loetscher, H., Ridley, R. G., and James, M. N. G. (1999) Crystal structure of the novel aspartic proteinase zymogen proplasmepsin II from plasmodium falciparum. Nat. Struct. Biol. 6, 32–37.CrossRefPubMedGoogle Scholar
  11. 11.
    Goll, D. E., Thompson, V. F., Taylor, R. G., and Zalewska, T. (1992) Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? BioEssays 14, 549–556.CrossRefPubMedGoogle Scholar
  12. 12.
    Melloni, E., Michetti, M., Salamino, F., and Pontremoli, S. (1998) Molecular and functional properties of a calpain activator protein specific for mu-isoforms. J. Biol. Chem. 27312,827–12,831.CrossRefPubMedGoogle Scholar
  13. 13.
    Mellgren, R. L. (1987) Calcium-dependent proteases: an enzyme system active at cellular membranes? FASEB J. 1,110–115.Google Scholar
  14. 14.
    Molinari, M., Anagli, J., and Carafoli, sE. (1994) Ca(2+)-activated neutral protease is active in the erythrocyte membrane in its nonautolyzed 80-kDa form. J. Biol. Chem. 269, 27,992–27,995.PubMedGoogle Scholar
  15. 15.
    Elce, J. S., Davies, P. L., Hegadorn, C., Maurice, D. H., and Arthur, J. S. C. (1997b) The effects of truncations of the small subunit on m-calpain activity and heterodimer formation. Biochem. J. 326, 31–38.PubMedGoogle Scholar
  16. 16.
    Yoshizawa, T., Sorimachi, H., Tomioka, S., Ishiura, S., and Suzuki, K. (1995a) Calpain dissociates into subunits in the presence of calcium ions. Biochem. Biophys. Res. Commun. 208, 376–383.CrossRefPubMedGoogle Scholar
  17. 17.
    Yoshizawa, T., Sorimachi, H., Tomioka, S., Ishiura, S., and Suzuki, K. (1995b) A catalytic subunit of calpain possess full proteolytic activity. FEBS Lett. 358, 101–103.CrossRefPubMedGoogle Scholar
  18. 18.
    Suzuki, K. and Sorimachi, H. (1998) A novel aspect of calpain activation. FEBS Lett. 1–4.Google Scholar
  19. 19.
    Zhang, W. and Mellgren, R. L. (1996) Calpain subunits remain associated during catalysis. Biochem. Biophys. Res. Commun. 227, 890–896.CrossRefGoogle Scholar
  20. 20.
    Dutt, P., Arthur, J. S. C., Croall D. E., and Elce, J. S. (1998) m-Calpain subunits remain associated in the presence of calcium. FEBS Lett. 436, 367–371.CrossRefPubMedGoogle Scholar
  21. 21.
    Hosfield, C. M., Elce, J. S., Davies, P. L., and Jia, Z. (1999) Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation. EMBO J. 18, 6880–6889.CrossRefPubMedGoogle Scholar
  22. 22.
    Ohno, S., Emori, Y., Imajoh, S., Kawasaki, H., Kisaragi, M., and Suzuki, K. (1984) Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature 312, 566–570.CrossRefPubMedGoogle Scholar
  23. 23.
    Berti, P. J. and Storer, A. C. (1995) Alignment/phylogeny of the papain superfamily of cysteine proteases. J. Mol. Biol. 246, 273–283.CrossRefPubMedGoogle Scholar
  24. 24.
    Groves, M. R., Coulombe, R., Jenkins, J., and Cygler, M. (1998) Structural basis for specificity of papain-like cysteine protease proregions toward their cognate enzymes. Proteins 32, 504–514.CrossRefPubMedGoogle Scholar
  25. 25.
    Kamphuis, I. G., Kalk, K. H., Swarte, M. B. A., and Drenth, J. (1984) Structure of papain refined at 1.65 Å resolution. J. Mol. Biol. 179, 233–256.CrossRefPubMedGoogle Scholar
  26. 26.
    Sutton, R. B., Davletov, B. A., Berghuis, A. M., Sudhof, T. C., and Sprang, S. R. (1995) Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80, 929–938.CrossRefPubMedGoogle Scholar
  27. 27.
    Rizo, J. and Sudhof, T. C. (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15,879–15,882.CrossRefPubMedGoogle Scholar
  28. 28.
    Blanchard, H., Grochulski, P., Li, Y., Arthur, J. S. C., Davies, P. L., Elce, J. S., and Cygler, M. (1997) Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and Ca2+-induced conformational changes. Nat. Struct. Biol. 4,532–538.Google Scholar
  29. 29.
    Lin, G. D., Chattopadhyay, D., Maki, M., Wang, K. K., Carson, M., Jin, L., et al. (1997) Crystal structure of calcium bound domain VI of calpain at 1.9 Å resolution and its role in enzyme assembly, regulation, and inhibitor binding. Nat. Struct. Biol. 4, 538–547.CrossRefGoogle Scholar
  30. 30.
    Elce, J. S., Hegadorn, C., and Arthur, J. S. C. (1997a) Autolysis, Ca2+requirement, and heterodimer stability in m-calpain. J. Biol. Chem. 272, 11,268–11,275.CrossRefPubMedGoogle Scholar
  31. 31.
    Barnes, T. M. and Hodgkin, J. (1996) The tra-3 sex determination gene of Caenorhabditis elegans encodes a member of the calpain regulatory protease family. EMBO J. 15, 4477–4484.PubMedGoogle Scholar
  32. 32.
    Baker, D., Shiau, A. K., and Agard, D. A. (1993) The role of pro regions in protein folding. Curr. Opin. Cell Biol. 5, 966–970.CrossRefPubMedGoogle Scholar
  33. 33.
    Sorimachi, H., Amano, S., Ishiura, S., and Suzuki, K. (1996) Primary sequences of rat µ-calpain large and small subunits are, respectively, moderately and highly similar to those of human. Biochim. Biophys. Acta 1309, 37–41.PubMedGoogle Scholar
  34. 34.
    Elce, J. S., Hegadorn, C., Gauthier, S., Vince, J. W., and Davies, P. L. (1995) Recombinant calpain II: improved expression systems and production of a C105A active-site mutant for crystallography. Protein Eng. 8, 843–848.CrossRefPubMedGoogle Scholar
  35. 35.
    Hendrickson, W. A., Horton, J. R., and LeMaster, D. M. (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672.PubMedGoogle Scholar
  36. 36.
    Croall, D. E. (2000) Purification of calpain by affinity chromatography on reactive red-agarose or on casein-sepharose, in Methods in Molecular Biology, vol. 144: Calpain Methods and Protocols (Elce, J. S., ed.), Humana Press, Totowa, NJ, pp. 33–40.CrossRefGoogle Scholar
  37. 37.
    Jancarik, J. R. and Kim, S. H. (1991) Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Crystallogr. 24, 409–411.CrossRefGoogle Scholar
  38. 38.
    Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326.CrossRefGoogle Scholar
  39. 39.
    Collaborative Computational ProjectNo. 4. (1994) The CCP4 suite, Acta Crystallogr. D50, 760–763.Google Scholar
  40. 40.
    Weeks, C. M. and Miller, R. (1999) Optimizing Shake-and-Bake for proteins. Acta Crystallogr. D55, 492–500.Google Scholar
  41. 41.
    De la Fortelle, E. and Bricogne, G. (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494.CrossRefGoogle Scholar
  42. 42.
    Abrahams, J. P. and Leslie, A. G. W. (1996) Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D52, 30–42.Google Scholar
  43. 43.
    McRee, D. E. (1992) A visual protein crystallographic software system for X11/XView. J. Mol. Graphics 10, 44–46.CrossRefGoogle Scholar
  44. 44.
    Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., et al. (1998) Crystallography and NMR system: a new software system for macromolecular structure determination. Acta Crystallogr. D54, 905–921.Google Scholar
  45. 45.
    Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thronton, J. M. (1993) Procheck-a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291.CrossRefGoogle Scholar
  46. 46.
    Kraulis, P. J. (1991) MOLSCRIPT: a program to produce both detailed and sche-matic plots of protein structures. J. Appl. Crystallogr. 24, 946–950.CrossRefGoogle Scholar
  47. 47.
    Merritt, E. A. and Bacon, D. J. (1997) Raster3D: Photorealistic molecular graphics. Methods Enzymol. 277, 505–524.Google Scholar
  48. 48.
    Nicholls A., Sharp, K., and Honig, B. (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296Google Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Zongchao Jia
    • 1
  • Christopher M. Hosfield
    • 1
  • Peter L. Davies
    • 1
  • John S. Elce
    • 1
  1. 1.Department of BiochemistryQueen’s University and the Protein Engineering Network of Centres of ExcellenceKingstonCanada

Personalised recommendations