Skip to main content

Purification of MeCP2-Containing Deacetylase from Xenopus laevis

  • Protocol
  • 1033 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 200))

Abstract

DNA methylation has long been associated with stable transcriptional silencing and a repressive chromatin structure (review refs. 1,2). Differential methylation is associated with imprinting, carcinogenesis, silencing of repetitive DNA, and allows for differentiating cells to efficiently shut off unnecessary genes. In vertebrates, where 60–90% of genomic CpG dinucleotides are methylated, methylation-dependent repression is vital for proper embryonic development (3). Microinjection experiments using methylated DNA templates implicate chromatin structure as an underlying mechanism of methylation-dependent silencing (4,5). Methyl-specific transcriptional repression requires chromatin assembly, and can be partially relieved by the histone deacetylase inhibitor Trichostatin A. In addition, two proteins have been identified, MeCP1 (6) and MeCP2 (7), that specifically bind to methylated DNA and mediate transcriptional repression. MeCP1 is a relatively uncharacterized complex that requires at least 12 symmetrical methyl-CpGs for DNA binding (6). MeCP2 is a single polypeptide containing a methyl-binding domain capable of binding a single methyl-CpG, and a transcriptional repression domain (8). Recently MeCP2 was shown to interact with the Sin3 corepressor and histone deacetylase (9,10). Changes in the acetylation state of the core histone tails correlates with changes in transcription (reviewed in refs. 11,12), and several transcriptional repression complexes containing histone deacetylases have recently been described (9,13,14)

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kass, S. U., Pruss, D., and Wolffe, A. P. (1997) How does DNA methylation repress transcription? Trends Genet. 13, 444–449.

    Article  PubMed  CAS  Google Scholar 

  2. Razin, A. (1998) CpG methylation, chromatin structure and gene silencing: a three-way connection. EMBO J. 17,4905–4908.

    Article  PubMed  CAS  Google Scholar 

  3. Tate, P., Skarnes, W., and Bird, A. P. (1996) The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nature Genet. 12, 205–208.

    Article  PubMed  CAS  Google Scholar 

  4. Buschhausen, G., Wittig, B., Graessmann, M., and Graessmann, A. (1987) Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 84, 1177–1181.

    Article  PubMed  CAS  Google Scholar 

  5. Kass, S. U., Landsberger, N., and Wollfe, A.P. (1997) DNA methylation directs a time-dependent repression of transcription initiation. CurrBiol. 7, 157–165.

    CAS  Google Scholar 

  6. Meehan, R. R., Lewis, J. D., McKay, S., Kleiner, E. L., and Bird, A. P. (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58,499–507.

    Article  PubMed  CAS  Google Scholar 

  7. Lewis, J. D., Meehan, R. R., Henzel, W. J., Maurer-Fogey, I., Jeppesen, P., Klein, H., and Bird, A. P. (1989) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914.

    Article  Google Scholar 

  8. Nan, X., Campoy, E J., and Bird, A. P. (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88, 471–481.

    Article  PubMed  CAS  Google Scholar 

  9. Jones, P. L., Veenstra, G. J. C., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., et al. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19,187–190.

    Article  PubMed  CAS  Google Scholar 

  10. Nan, X., Ng, H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N., and Bird, A. P. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389.

    Article  PubMed  CAS  Google Scholar 

  11. Struhl, K. (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606.

    Article  PubMed  CAS  Google Scholar 

  12. Grunstein, M. (1997) Histone acetylation in chromatin structure and transcription. Nature 389, 349–352.

    Article  PubMed  CAS  Google Scholar 

  13. Wade, P. A., Jones, P. L., Vermaak, D., and Wolffe, A. P. (1998) A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr. Biol. 8, 843–846.

    Article  PubMed  CAS  Google Scholar 

  14. Heinzel, T., Lavinsky, R. M., Mullen, T., et al. (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387,43–48.

    Article  PubMed  CAS  Google Scholar 

  15. Miskimins, W. K., Roberts, M. P., McClelland, A., and Ruddle, E H. (1985) Use of a protein-blotting procedure and a specific DNA probe to identify nuclear proteins that recognize the promoter region of the transferrin receptor gene. Proc. Natl. Acad. Sci. USA 32, 6741–6744.

    Article  Google Scholar 

  16. Vinson, C., LaMarco, K., Johnson, P., Landschulz, W., and McKnight, S. (1988) In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Dev. 2, 801–806.

    Article  PubMed  CAS  Google Scholar 

  17. Shimamura, A. and Worcel, A. (1989) The assembly of regularly spaced nucleosomes in the Xenopus oocyte S-150 extract is accompanied by deacetylation of histone H4. J. Biol. Chem. 264,14,524–14,530.

    CAS  Google Scholar 

  18. Chandler, S. P. and Wolffe, A. P. (1998) Analysis of linker histone binding to mono-and dinucleosomes, in Methods in Molecular Biology: Chromatin Protocols. (cker, P., ed.), Humana Press, Totowa, NJ, pp. 103–1

    Google Scholar 

  19. Parthun, M. R., Widom, J., and Gottschling, D. E. (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87, 85–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Jones, P.L., Wade, P.A., Wolffe, A.P. (2002). Purification of MeCP2-Containing Deacetylase from Xenopus laevis . In: Mills, K.I., Ramsahoye, B.H. (eds) DNA Methylation Protocols. Methods in Molecular Biology™, vol 200. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-182-5:131

Download citation

  • DOI: https://doi.org/10.1385/1-59259-182-5:131

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-618-5

  • Online ISBN: 978-1-59259-182-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics