Skip to main content

Lysine Hydroxylation and Crosslinking of Collagen

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 194))

Abstract

Collagen is a large family of structurally related proteins (1) and is the most abundant molecule in vertebrates. Type I collagen, the predominant genetic type in the collagen family, is a heterotrimeric molecule composed of two α1 chains and one α2 chain and is the major fibrillar component in most connective tissues. This molecule consists of three domains: amino-terminal nontriple helical (N-telopeptide), triple helical (helical), and carboxy-terminal nontriple helical (C-telopeptide) domains (Fig. 1). The central uninterrupted helical domain of each chain contains more than 300 repeats of (Gly-X-Y) sequence and represents more than 95% of the polypeptide. One of the characteristic features of collagen is its extensive posttranslational modifications, most of which are unique to collagen protein. Such modifications include hydroxylation of proline (Pro) and lysine (Lys) residues, glycosylation of specific hydroxylysine (Hyl) residues, oxidative deamination of the e-amino groups of Lys/Hyl in the telopeptide domains of the molecule, and subsequent intra/intermolecular crosslinking (2) (Fig. 1). The hydroxylation of Pro is catalyzed by prolyl 4-hydroxylase and prolyl 3-hydroxylase. The former reacts on Pro with the minimum sequence X-Pro-Gly and the latter appears to require a Pro-4-Hyp-Gly sequence (3). The presence of 4-Hyp (predominant form) is critical in stabilizing the triple helical conformation of collagen providing hydrogen bonds and water bridges (4). The content of Pro/Hyp in type I collagen is relatively high, representing 22–23 of the total amino acids, and 40–45% of Pro is hydroxylated (mostly 4-Hyp).

Structure of type I collagen molecule. Type I collagen molecule is composed of two α1 chains (solid line) and one α2 chain (dotted line). The molecule consists of three domains: amino-terminal nonhelical (N-telo.), central triplehelical (helical), and carboxy-terminal nonhelical (C-telo.) domains. Some of the lysine residues in these domains are hydroxylated. specific hydroxylysine residues in the helical domain can be O-glycosylated to form galactosylhydroxylysine or glucosylgalactosylhydroxylysine residues. In general, the dissaccharide form is more prevalent (20) although the monosaccharide derivative is relatively abundant in certain tissues (e.g., bone). Hydroxylysine, -gal: galactose, -glc: glucose, ●: Lysine/Hydroxylysine residues potentially converted to aldehyde.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Prockop D. J. and Kivirikko K. I. (1995) Collagens: molecular biology, diseases, and potentials for therapy. Ann. Rev. Biochem. 64, 12–14.

    Article  Google Scholar 

  2. Yamauchi M. (1995) Collagen: the major matrix molecule in mineralized tissues, in Calcium and Phosphorus in Health and Disease (Anderson J. J. B. and Garner S. C., eds.), CRC Press, Boca Raton, FL, pp. 128–145.

    Google Scholar 

  3. Kivirikko K. I. and Myllyla R. (1982) Posttranslational enzymes in the biosynthesis of collagen: intracellular enzymes. Methods Enzymol. 82, 245–304.

    Article  CAS  PubMed  Google Scholar 

  4. Berg R. A. and Prockop D. J., (1973) The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triplehelix of collagen. Biochem. Biophys. Res. Commun. 52, 115–120.

    Article  CAS  PubMed  Google Scholar 

  5. Miller E. J. (1984) Chemistry of the collagens and their distribution, in Extracellular Matrix Biochemistry (Piez K. A. and Reddi A. H., eds.), Elsevier, New York, NY.

    Google Scholar 

  6. Royce P. M. and Barnes M. J. (1985) Failure of highly purified lysyl hydroxylase to hydroxylate lysyl residues in the non-helical regions of collagen. Biochem. J. 230, 475–480.

    CAS  PubMed  Google Scholar 

  7. Gerriets J. E., Curwin S. L., and Last J. A. (1993) Tendon hypertrophy is associated with increased hydroxylation of nonhelical lysine residues at two specific cross-linking sites in type I collagen. J. Biol. Chem. 268, 25,553–25,560.

    CAS  PubMed  Google Scholar 

  8. Valtavaara M., Papponen H., Pirttila A. M., Hiltunen K., Helander H. and Myllyla R. (1997) Cloning and characterization of a novel human lysyl hydroxylase isoform highly expressed in pancreas and muscle. J. Biol. Chem. 272, 6831–6834.

    Article  CAS  PubMed  Google Scholar 

  9. Valtavaara M., Szpirer C., Szpirer J. and Myllyla R. (1998) Primary structure, tissue distribution, and chromosomal localization of a novel isoform of lysyl hydroxylase (lysyl hydroxylase 3). J. Biol. Chem. 273, 12,881–12,886.

    Article  CAS  PubMed  Google Scholar 

  10. Uzawa K., Grzesik W. J., Nishiura T., Kuznetsov S. A., Robey P. G., Brenner D. A., and Yamauchi M. (1999) Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro. J. Bone Miner. Res. 14, 1272–1280.

    Article  CAS  PubMed  Google Scholar 

  11. Tanzer M. L. (1973) Cross-linking of collagen. Science 180, 561–566.

    Article  CAS  PubMed  Google Scholar 

  12. Yamauchi M., London R. E., Guenat C., Hashimoto F., and Mechanic G. L. (1987) Structure and formation of a stable histidine-based trifunctional cross-link in skin collagen. J. Biol. Chem. 262, 11,428–11,434.

    CAS  PubMed  Google Scholar 

  13. Yamauchi M., Chandler G. S., Tanzawa H. and Katz E. P. (1996) Cross-linking and the molecular packing of corneal collagen. Biochem. Biophys. Res. Commun. 219, 311–315.

    Article  CAS  PubMed  Google Scholar 

  14. Eyre D. R., Patz M. A., and Gallop P. M. (1984) Cross-linking in collagen and elastin. Ann. Rev. Biochem. 53, 717–748.

    Article  CAS  PubMed  Google Scholar 

  15. Kuypers R., Tyler M., Kurth L. B., Jenkins I. D., and Horgan D. J. (1992) Identification of the loci of the collagen-associated Ehrlich chromogen in type I collagen confirms its role as a trivalent cross-link. Biochem. J. 283, 129–136.

    CAS  PubMed  Google Scholar 

  16. Hanson D. A. and Eyre D. R. (1996) Molecular site specificity of pyridinoline and pyrrole cross-links in type I collagen of human bone. J. Biol. Chem. 271, 26,508–26,516.

    Article  CAS  PubMed  Google Scholar 

  17. Bailey A. J., Paul R. G., and Knott L. (1998) Mechanisms of maturation and ageing of collagen. Mech. Ageing Dev. 106, 1–56.

    Article  CAS  PubMed  Google Scholar 

  18. Yamauchi M. and Mechanic G. L. (1988) Cross-linking of collagen, in Collagen, vol. I (Nimni M. E., ed.), CRC Press, Boca Raton, FL, pp. 157–186.

    Google Scholar 

  19. Robins S. P. (1982) Analysis of the crosslinking components in collagen and elastin. Methods Biochem. Anal. 28, 329–379.

    Article  CAS  PubMed  Google Scholar 

  20. Yamauchi M., Katz E. P., and Mechanic G. L. (1986) Intermolecular crosslinking and stereospecific molecular packing in type I collagen fibrils of the periodontal ligament. Biochemistry 25, 4907–4913.

    Article  CAS  PubMed  Google Scholar 

  21. Yamauchi M. and Katz E. P. (1993) The post-translational chemistry and molecular packing of mineralizing tendon collagens. Connect. Tissue Res. 29, 81–98.

    Article  CAS  PubMed  Google Scholar 

  22. Uzawa K., Marshall M. K., Katz E. P., Tanzawa H., Yeowell H. N., and Yamauchi M. (1998) Altered posttranslational modifications of collagen in keloid. Biochem. Biophys. Res. Commun. 249, 652–655.

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto K. and Yamauchi M. (1999) Characterization of dermal type I collagen of C3H mouse at different stages of the hair cycle. Br. J. Dermatol. 141, 667–675.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Yamauchi, M., Shiiba, M. (2002). Lysine Hydroxylation and Crosslinking of Collagen. In: Kannicht, C. (eds) Posttranslational Modifications of Proteins. Methods in Molecular Biology™, vol 194. Humana Press. https://doi.org/10.1385/1-59259-181-7:277

Download citation

  • DOI: https://doi.org/10.1385/1-59259-181-7:277

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-678-9

  • Online ISBN: 978-1-59259-181-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics