Homogeneous Techniques for Monitoring Receptor–Ligand Interactions

  • James S. Marks
  • Douglas S. Burdette
  • David A. Giegel
Part of the Methods in Molecular Biology™ book series (MIMB, volume 190)


Radioligand binding is a well-established technique that has been used to study the interactions of extracellular ligands and their corresponding cell-surface receptors (1). The initial studies relied on laborious, vacuum-filtration techniques that are cumbersome and difficult to automate. Despite these limitations, filtration-based radioligand binding assays were adequate to probe the kinetics of receptor-ligand interactions and to screen small libraries of compounds in search of receptor-binding antagonists. A number of reviews are available that described this methodology in detail (2,3).


Wheat Germ Agglutinin Vacuum Filtration Fluorescence Correlation Spectroscopy Assay Volume Scintillation Proximity Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fernandes P. B. (1998) Technological advances in high-throughput screening. Curr. Opin. Chem. Biol. 2, 597–603.PubMedCrossRefGoogle Scholar
  2. 2.
    Bylund D. B. and Yamamura H. I. (1990) Methods for receptor binding, in Methods in Neurotransmitter Receptor Analysis (Yamamura H. I., Enna S. J., and Kuha M. J., (nteds.), Raven Press, New York, NY pp. 1–35.Google Scholar
  3. 3.
    Qume M. (1999) Overview of ligand-receptor binding techniques, in Methods in Molecular Biology (Keen M., ed.), Humana Press Inc., Totowa, NJ, 3–23.Google Scholar
  4. 4.
    Zlokarnik G., Negulescu P.A., Knapp T. E., Mere L., Burres N., Feng L., et al. (1998) Quantitation of transcription and clonal selection of single living cells with B-lactamase as reporter. Science 279, 84–88.PubMedCrossRefGoogle Scholar
  5. 5.
    Allen M., Reeves J., and Mellor G. (2000) High throughput fluorescence polarization: a homogeneous alternative to radioligand binding for cell surface receptors. J. Biomol. Screening 5, 63–69.CrossRefGoogle Scholar
  6. 6.
    Parker G. J., Law T. L., Lenoch F. J., and Bolger R. E. (2000) Development of high throughput screening assays using fluorescence polarization: nuclear receptor-ligand-binding and kinase/phosphatase assays. J. Biomol. Screening 5, 77–88.CrossRefGoogle Scholar
  7. 7.
    Moore K. J., Turconi S., Ashman S., Ruediger M., Haupts U., Emerick V., and Pope A. J. (2000) Single molecule detection technologies in miniaturized high throughput screening: fluorescence correlation spectroscopy. J. Biomol. Screening 5, 335–353.CrossRefGoogle Scholar
  8. 8.
    Haupts U., Rudiger M., and Pope A. J. (2000) Macroscopic versus microscopic fluorescence techniques in (ultra)-high throughput screening. DDT:HTS (Suppl. 1), 3–9Google Scholar
  9. 9.
    Atkins P. W. (1994) Physical chemistry, 5th ed. W. H. Freeman Co., New York, NY, pp. 1–17.Google Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • James S. Marks
    • 1
  • Douglas S. Burdette
    • 1
  • David A. Giegel
    • 1
  1. 1.Pfizer Global Research and DevelopmentAnn Arbor

Personalised recommendations