Skip to main content

Electron Microscopic Detection of DNA Damage Labeled by TUNEL

  • Protocol
  • 902 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 203))

Abstract

A number of exogenous and endogenous toxic agents may damage DNA, leading to genomic instability and transcriptional infidelity. Genetic or acquired defects in DNA repair mechanisms also contribute to exacerbate DNA damage. Progressive accumulation of DNA injury may alter the genetic control of cell proliferation and cause cancer. Alternatively, increased cell death may be a more likely consequence if DNA damage affects postmitotic cells, e.g., neurons (1). As a matter of fact, DNA damage is suspected to play a major role in the neuronal death that characterizes brain ischemia (2) and various neurodegenerative diseases (1,3).

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rolig R. L. and McKinnon P. J. (2000) Linking DNA damage and neurodegeneration. Trends Neurosci. 23, 417–424.

    Article  PubMed  CAS  Google Scholar 

  2. Love S. (1999) Oxidative stress in brain ischemia. Brain Pathol. 9, 119–131.

    Article  PubMed  CAS  Google Scholar 

  3. De la Monte S. M., Luong T., Neely T. R., Robinson D. and Wands J. R. (2000) Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’s disease. Lab. Invest. 80, 1323–1335.

    Article  PubMed  Google Scholar 

  4. Kerr J. F. R., Wyllie A. H. and Currie A. R. (1972) Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257.

    Article  PubMed  CAS  Google Scholar 

  5. Budihardjo I., Oliver H., Lutter M., Luo X. and Wang X. (1999) Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290.

    Article  PubMed  CAS  Google Scholar 

  6. Enari M., Sakahira H., Yokoyama H., Okawa K. and Nagata S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50.

    Article  PubMed  CAS  Google Scholar 

  7. Majno G. and Joris I. (1995) Apoptosis, oncosis, and necrosis: an overview of cell death. Am. J. Pathol. 146, 3–15.

    PubMed  CAS  Google Scholar 

  8. Wang K. K. (2000) Calpain and caspase: can you tell the difference? Trends Neurosci. 23, 20–26.

    Article  PubMed  Google Scholar 

  9. Hayashi R., Ito Y., Matsumoto K., Fujino Y. and Otsuki Y. (1998) Quantitative differentiation of both free 3′-OH and 5′-OH DNA ends between heat-induced apoptosis and necrosis. J. Histochem. Cytochem. 46, 1051–1059.

    PubMed  CAS  Google Scholar 

  10. Didenko V. V. and Hornsby P. J. (1996) Presence of double-strand breaks with single-base 3′ overhangs in cells undergoing apoptosis but not necrosis. J. Cell Biol. 135, 1369–1376.

    Article  PubMed  CAS  Google Scholar 

  11. Gavrieli Y., Sherman Y. and Ben-Sasson S. A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.

    Article  PubMed  CAS  Google Scholar 

  12. Gold R., Schmied M., Rothe G., Zischler H., Breitschopf H., Wekerle H. and Lassmann H. (1993) Detection of DNA fragmentation in apoptosis: application of an in situ nick translation to cell culture systems and tissue sections. J. Histochem. Cytochem. 41, 1023–1030.

    PubMed  CAS  Google Scholar 

  13. Wijsman J. H., Jonker R. R., Keijzer R., Van de Velde C. J. H., Cornelisse C. J. and Van Dierendonck J. H. (1993) A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J. Histochem. Cytochem. 41, 7–12.

    PubMed  CAS  Google Scholar 

  14. Gorczyca W., Gong J. and Darzynkiewicz Z. (1993) Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res. 53, 1945–1951

    PubMed  CAS  Google Scholar 

  15. Migheli A., Cavalla P., Marino S. and Schiffer D. (1994) A study of apoptosis in normal and pathologic nervous tissue after in situ end-labeling of fragmented DNA. J. Neuropathol. Exp. Neurol. 53, 606–616.

    Article  PubMed  CAS  Google Scholar 

  16. Grasl-Kraupp B., Ruttkay-Nedecky B., Koudelka H., Bukowska K., Bursch W. and Schulte-Hermann R. (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis and autolytic cell death: a cautionary note. Hepatology 21, 1465–1468.

    PubMed  CAS  Google Scholar 

  17. van Lookeren Campagne M., Lucassen P. J., Vermeulen J. P. and Balasz R. (1995) NMDA and kainate induce internucleosomal DNA cleavage associated with both apoptotic and necrotic cell death in the neonatal rat brain. Eur. J. Neurosci. 7, 1627–1640.

    Article  PubMed  Google Scholar 

  18. Mundle S., Gao X. Z., Khan S., Gregory S. A., Preisler H. D. and Raza A. (1995) Two in situ labeling techniques reveal different patterns of DNA fragmen tation during spontaneous apoptosis in vivo and induced apoptosis in vitro. Anticancer Res. 15, 1895–1904.

    CAS  Google Scholar 

  19. Gold R., Schmied M., Giegerich G., Breitschopf H., Hartung H. P., Toyka K. V. and Lassmann H. (1994) Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Lab. Invest. 71, 219-22

    Google Scholar 

  20. Lopes S., Jurisicova A., Sun J. G. and Casper R. F. (1998) Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum. Reprod. 13, 896–900.

    Article  PubMed  CAS  Google Scholar 

  21. Coates P. J., Save V., Ansari B. and Hall P. A. (1995) Demonstration of DNA damage/repair in individual cells using in situ end labeling: association of p53 with sites of DNA damage. J. Pathol. 176, 19–26.

    Article  PubMed  CAS  Google Scholar 

  22. Assad M., Lemieux N. and Rivard C. H. (1997) Immunogold electron microscopy in situ end-labeling (EM-ISEL): assay for biomaterial DNA damage detection. Biomed. Mater. Eng. 7, 391–400.

    PubMed  CAS  Google Scholar 

  23. Brooks P. J. (2000) Brain atrophy and neuronal loss in alcoholism: a role for DNA damage? Neurochem. Int. 37, 403–412.

    Article  PubMed  CAS  Google Scholar 

  24. Kisby G. E., Kabel H., Hugon J. and Spencer P. (1999) Damage and repair of nerve cell DNA in toxic stress. Drug Metab. Rev. 31, 589–618.

    Article  PubMed  CAS  Google Scholar 

  25. Tateyama H., Tada T., Hattori H., Murase T., Li W. X. and Eimoto T. (1998) Effects of prefixation and fixation times on apoptosis detection by in situ endlabeling of fragmented DNA. Arch. Pathol. Lab. Med. 122, 252–255.

    PubMed  CAS  Google Scholar 

  26. Schallock K., Schulz-Schaeffer W. J., Giese A. and Kretzschmar H. A. (1997) Postmortem delay and temperature conditions affect the in situ end-labeling (ISEL) assay in brain tissue of mice. Clin. Neuropathol. 16, 133–136.

    PubMed  CAS  Google Scholar 

  27. Labat-Moleur F., Guillermet C., Lorimier P., Robert C., Lantuejoul S., Brambilla E. and Negoescu A. (1998) TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J. Histochem. Cytochem. 46, 327–334.

    PubMed  CAS  Google Scholar 

  28. Clarke P. G. H. (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol. 181, 195–213.

    Article  PubMed  CAS  Google Scholar 

  29. Migheli A., Piva R., Wei J., Attanasio A., Casolino S., Dlouhy S. R., Bayer S. A. and Ghetti B. (1997) Diverse cell death pathways result from a single missense mutation in weaver mouse. Am. J. Pathol. 151, 1629–1638.

    PubMed  CAS  Google Scholar 

  30. Migheli A., Attanasio A. and Schiffer D. (1995) Ultrastructural detection of DNA strand breaks in apoptotic neural cells by in situ end-labeling techniques. J. Pathol. 176, 27–35.

    Article  PubMed  CAS  Google Scholar 

  31. Kanoh M., Takemura G., Misao J., Hayakawa Y., Aoyama T., Nishigaki K., Noda T., Fujiwara T., Fukuda K., Minatoguchi S. and Fujiwara H. (1999) Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy-Not apoptosis but DNA repair. Circulation 99, 2757–2764.

    PubMed  CAS  Google Scholar 

  32. Thiry M. (1991) In situ nick translation at the electron microscopic level: a tool for studying the location of DNAse I-sensitive regions within the cell. J. Histochem. Cytochem. 39, 871–874.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Migheli, A. (2002). Electron Microscopic Detection of DNA Damage Labeled by TUNEL. In: Didenko, V.V. (eds) In Situ Detection of DNA Damage. Methods in Molecular Biology, vol 203. Humana Press. https://doi.org/10.1385/1-59259-179-5:31

Download citation

  • DOI: https://doi.org/10.1385/1-59259-179-5:31

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-952-0

  • Online ISBN: 978-1-59259-179-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics