Skip to main content

Detection of Caspases Activation In Situ by Fluorochrome-Labeled Inhibitors of Caspases (FLICA)

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 203))

Abstract

Caspases are cysteine-aspartic acid specific proteases that are activated in response to different cell death inducing stimuli (13). Their activation initiates specific cleavage of the respective target proteins and therefore is considered to be a marker of the irreversible steps that lead to cell demise (reviews 4,5). Caspases specifically recognize a four-amino acid sequence on their substrate proteins; the carboxyl end of aspartic acid within this sequence is the target for cleavage. Several approaches have been developed to detect the process of caspases activation. Because the activation involves the transcatalytic cleavage of the zymogen pro-caspases (reviews 68) the cleavage products having lower molecular weight than the zymogen can be revealed electrophoretically and identified in Western blots using caspase-specific antibodies. Another approach utilizes the fluorogenic (or chromogenic) substrates of caspases. Peptide substrates were developed which are colorless or nonfluorescent, but upon cleavage, generate colored or fluorescing products (911). Utility of these two approaches, however, was limited to the measurement of caspases activation in cell extracts thereby providing no information on the in situ caspases activation. This would allow one to study individual cells, assess heterogeneity of cell populations, or reveal correlation with other cell attributes.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alnemri E. S., Livingston D. I., Nicholson D. W., Salvesen G, Thornberry N. A., Wong W. W., and Yuan J. (1996) Human ICE/CED-4 protease nomenclature. Cell. 87, 171–173.

    Article  PubMed  CAS  Google Scholar 

  2. Kaufmann S. H., Desnoyers S., Ottaviano Y., Davidson N. E., and Poirier G. G. (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res.. 53, 3976–3985.

    PubMed  CAS  Google Scholar 

  3. Lazebnik Y. A., Kaufmann S. H., Desnoyers S., Poirier G. G., and Earnshaw W. C. (1994) Cleavage of poly(ADP-ribose) polymerase by proteinase with properties like ICE. Nature. 371, 346–347.

    Article  PubMed  CAS  Google Scholar 

  4. Budihardjo I., Oliver H., Lutter M., and Luo X. (1999) Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol.. 15, 269–290.

    Article  PubMed  CAS  Google Scholar 

  5. Earnshaw W. C., Martins L. M., and Kaufmann S. H. (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem.. 68, 383–424.

    Article  PubMed  CAS  Google Scholar 

  6. Nicholson D. W. (1999) Caspase structure, proteolytic substrates and function during apoptotic cell death. Cell Death Differ.. 6, 1028–1042.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang T. S., Hunort S., Kuida K., and Flavell R. A. (1999) Caspase knockouts: matters of life and death. Cell Death Differ.. 6, 1043–1053.

    Article  Google Scholar 

  8. Stennicke H. R., and Salvesen G. S. (1999) Catalytic properties of caspases. Cell Death Differ.. 6, 1060–1066.

    Article  Google Scholar 

  9. Gorman A. M., Hirt U. A., Zhivotovsky B., Orrenius S., and Ceccatelliu S. (1999) Application of a fluorometric assay to detect caspase activity in thymus tissue undergoing apoptosis in vivo. J. Immunol. Methods. 226, 43–48.

    Article  PubMed  CAS  Google Scholar 

  10. Liu J., Bhalgat M., Zhang C. Diwu Z., Hoyland B., and Klaubert D. H. (1999) Fluorescent molecular probes V: a sensitive caspase-3 substrate for fluorometric assays. Bioorg. Med. Chem. Lett.. 9, 3231–3236.

    Article  PubMed  CAS  Google Scholar 

  11. Komoriya A., Packard B. Z., Brown M. J., Wu M. L., and Henkart P. A. (2000) Assessment of caspase activities in intact apoptotic thymocytes using cell-permeable fluorogenic caspase substrates. J. Exp. Med.. 191, 1819–1828.

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka M., Momoi T., and Marunouchi T. (2000) In situ detection of activated caspase-3 in apoptotic granule neurons in the developing cerebellum in slice cultures andin vivo. Brain Res. Dev.. 121, 223–228.

    Article  CAS  Google Scholar 

  13. Li X., and Darzynkiewicz Z. (2000) Cleavage of poly(ADP-ribose) polymerase measured in situ in individual cells: relationship to DNA fragmentation and cell cycle position during apoptosis. Exp. Cell Res.. 255, 125–132.

    Article  PubMed  CAS  Google Scholar 

  14. Li X., Du L., and Darzynkiewicz Z. (2000) During apoptosis of HL-60 and U-937 cells caspases are activated independently of dissipation of mitochondrial electrochemical potential. Exp. Cell Res.. 257, 290–297.

    Article  PubMed  CAS  Google Scholar 

  15. Bedner E., Smolewski P., Amstad P., and Darzynkiewicz Z. (2000) Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp. Cell Res.. 259, 308–313.

    Article  PubMed  CAS  Google Scholar 

  16. Smolewski P., Bedner E., Du L., Hsieh T.-C., Wu J. M., Phelps D. J., and Darzynkiewicz Z. (2001) Detection of caspases activation by fluorochromelabeled inhibitors: Multiparameter analysis by laser scanning cytometry. Cytometry 44, 73–82.

    Article  PubMed  CAS  Google Scholar 

  17. Darzynkiewicz Z., and Barnard E. A. (1967) Specific proteases of mast cells. Nature. 213, 1198–1203.

    Article  CAS  Google Scholar 

  18. Zhivotovsky B., Samali A., Gahm A., and Orrenius S. (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ.. 8, 644–651.

    Article  Google Scholar 

  19. Kamentsky L. A. (2001) Laser scanning cytometry. Meth Cell Biol.. 63, 51–87.

    Article  CAS  Google Scholar 

  20. Darzynkiewicz Z., Bedner E., Li X., Gorczyca W., and Melamed M.R. (1999) Laser scanning cytometry. A new instrumentation with many applications. Exp. Cell Res.. 249, 1–12.

    Article  PubMed  CAS  Google Scholar 

  21. Bedner E., Li X., Kunicki J., and Darzynkiewicz Z. (2000) Translocation of Bax to mitochondria during apoptosis measured by laser scanning cytometry. Cytometry. 41, 83–88.

    Article  PubMed  CAS  Google Scholar 

  22. Li X., and Darzynkiewicz Z. (2000) The Schrödinger’s cat quandary in cell biology: integration of live cell functional assays with measurements of fixed cells in analysis of apoptosis. Exp. Cell Res.. 249, 404–412.

    Article  Google Scholar 

  23. Bedner E., Li X., Gorczyca W., Melamed M. R. and Darzynkiewicz Z. (1999) Analysis of apoptosis by laser scanning cytometry. Cytometry, 35, 181–195

    Article  PubMed  CAS  Google Scholar 

  24. Ekert P. G., Silke J., and Vaux D.,L. (1999) Caspase inhibitors. Cell Death Differ.. 6, 1081–1086.

    Article  PubMed  CAS  Google Scholar 

  25. Thornberry N. A., Peterson E. P., Zhao J. J., Howard A. D., Griffin P. R., and Chapman K. T. (1994) Inactivation of interleukin-1 beta converting enzyme by peptide(acyloxy)methyl ketones. Biochemistry. 33, 3934–3940.

    Article  PubMed  CAS  Google Scholar 

  26. Garcia-Calvo M., Peterson E. P., Leiting B., Ruel R., Nicholson D. W., and Thornberry N. A. (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem.. 273, 32,608–32,613.

    Article  PubMed  CAS  Google Scholar 

  27. Thornberry N. A., Rano T. A., Peterson E. P., Rasper D. M., Timkey T., Garcia-Calvo M., Houtzager V. M., Nordstrom P. A., Roy S., Valliancourt J. P., Chapman K. T., and Nicholson D. W. (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. J. Biol. Chem.. 272, 17,907–17,911.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Darzynkiewicz, Z., Bedner, E., Smolewski, P., Lee, B.W., Johnson, G.L. (2002). Detection of Caspases Activation In Situ by Fluorochrome-Labeled Inhibitors of Caspases (FLICA). In: Didenko, V.V. (eds) In Situ Detection of DNA Damage. Methods in Molecular Biology, vol 203. Humana Press. https://doi.org/10.1385/1-59259-179-5:289

Download citation

  • DOI: https://doi.org/10.1385/1-59259-179-5:289

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-952-0

  • Online ISBN: 978-1-59259-179-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics