Skip to main content

Application of FISH to Detect DNA Damage

DNA Breakage Detection-FISH (DBD-FISH)

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 203))

Abstract

Chromatin structure can affect the level of induced DNA damage and/or repair, and so these effects may vary within different DNA sequence areas of a cell, as well as between different cell types. DBD-FISH is a procedure that allows both intragenomic and intercellular heterogeneity in DNA breakage induction and repair to be assayed (1). Thus, besides whole cellular DNA, the behavior of different specific DNA sequence areas may be simultaneously analyzed within a specific cell. Cells contained within a very thin inert agarose layer on a glass slide are briefly incubated in an alkaline unwinding solution that transforms DNA breaks (2,3) into single-stranded DNA (ssDNA) motifs. These motifs are initiated from the end of the DNA breaks, serving as targets for hybridization of DNA probes. DNA melting is then stopped and proteins are removed with subsequent incubations in neutralizing and lysing solutions, to yield DNA in a residual nucleus-like structure, known as the nucleoid. After washing and dehydration in increasing ethanol baths, the microgel containing the nucleoids collapses and dries, thereby allowing DNA probes to be hybridized and detected, as in current FISH procedures (4). As DNA breaks increase within a specific nuclear target area, the alkali produces more ssDNA in the region and more DNA probe hybridizes, giving rise to a more intense and/or widely distributed FISH signal, which can be captured and quantified with a digital image analysis system. The specific DNA probe determines the chromatin area to be analyzed. In summary, DBD-FISH integrates the microgel techniques habitually employed in the “nuclear halo” (5,6) or “comet tail” tests (7,8), the alkaline unwinding assays for the detection of DNA breaks currently used in radiobiological studies (9,10), and FISH (11).

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fernández J. L., Goyanes V., Ramiro-Diaz J., and Gosálvez J. (1998) Application of FISH for in situ detection and quantification of DNA breaks. Cytogenet. Cell Genet. 82, 251–256.

    Article  PubMed  Google Scholar 

  2. Bunch R. T., Gewirtz D. A., and Povirk L.F (1992) A combined alkaline unwinding/Southern blotting assay for measuring low levels of cellular DNA breakage within specific genomic regions. Oncol. Res. 4, 7–15.

    PubMed  CAS  Google Scholar 

  3. Bunch R. T., Gewirtz D. A., and Povirk L. F. (1995) Ionizing radiation-induced DNA strand breakage and rejoining in specific genomic regions as determined by an alkaline unwinding/Southern blotting method. Int. J. Radiat. Biol. 68, 553–562.

    Article  PubMed  CAS  Google Scholar 

  4. Verma R. S., and Babu A. (ed.) (1995) Human chromosomes. Principles and techniques. 2nd ed. McGraw-Hill. Inc.

    Google Scholar 

  5. Roti Roti, J. L., and Wright W. D. (1987) Visualization of DNA loops in nucleoids from HeLa cells: assays for DNA damage and repair. Cytometry 8, 461–467.

    Article  Google Scholar 

  6. Smith P. J., and Sykes H. R. (1992) Simultaneous measurement of cell cycle phase position and ionizing radiation-induced DNA strand breakage in single human tumour cells using laser scanning confocal imaging. Int. J. Radiat. Biol. 61, 553–560.

    Article  PubMed  CAS  Google Scholar 

  7. McKelvey-Martin V. J., Green M. H. L., Schmezer P., Pool-Zobel B. L., De Méo M. P., and Collins A. (1993) The single gel cell electrophoresis (comet assay): a European review. Mutation Res. 288, 47–63.

    Article  PubMed  CAS  Google Scholar 

  8. Fairbain D. W., Olive P. L., and O’Neill K. L. (1995) The comet assay: a comprehensive review. Mutation Res. 339, 37–59.

    Google Scholar 

  9. Ahnström G., and Erixon K. (1973) Radiation-induced single-strand breaks in DNA determined by rate of alkaline strand separation and hydroxylapatite chro-matography: an alternative to velocity sedimentation. Int. J. Radiat. Biol. 36, 197–199.

    Google Scholar 

  10. Rydberg B. (1975) The rate of strand separation in alkali of DNA of irradiated mammalian cells. Radiat. Res. 61, 274–287.

    Article  PubMed  CAS  Google Scholar 

  11. Santos S. J., Singh N. P., and Natarajan A. T. (1997) Fluorescence in situ hybridization with comets. Exp. Cell Res. 232, 407–411.

    Article  PubMed  CAS  Google Scholar 

  12. Von Sonntag C. (1987) The chemical basis of radiation biology. Taylor and Francis Ltd., London, UK.

    Google Scholar 

  13. Vázquez-Gundín F., Gosálvez J., de la Torre J., and Fernández J. L. (2000) DNA breakage detection-FISH (DBD-FISH): effect of unwinding time. Mutation Res. 453, 83–88.

    Article  PubMed  Google Scholar 

  14. Fernández J. L., Vázquez-Gundín F., Delgado A., Goyanes V. J., Ramiro-Díaz J., de la Torre J., and οsálvez J. (2000) DNA breakage detection-FISH (DBD-FISH) in human spermatozoa: technical variants evidence different structural features. Mutation Res. 453, 77–82.

    Article  PubMed  Google Scholar 

  15. Olive P. L., and Banáth J. P. (1993) Detection of DNA double strand breaks through the cell cycle after exposure to X-rays, bleomycin, etoposide and 125IdUrd. Int. J Radiat. Biol. 64, 349–358.

    Article  PubMed  CAS  Google Scholar 

  16. Ballard S. G., and Ward D. C. (1993) Fluorescence in situ hybridization using digital imaging microscopy. J Histochem. Cytochem. 41, 1755–1759.

    PubMed  CAS  Google Scholar 

  17. Olive P. L., Chan A. P. S., and Cu C. S. (1988) Comparison between the DNA precipitation and alkali unwinding assays for detecting DNA strand breaks and cross-links. Cancer Res. 48, 6444–6449.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Fernández, J.L., Gosálvez, J. (2002). Application of FISH to Detect DNA Damage. In: Didenko, V.V. (eds) In Situ Detection of DNA Damage. Methods in Molecular Biology, vol 203. Humana Press. https://doi.org/10.1385/1-59259-179-5:203

Download citation

  • DOI: https://doi.org/10.1385/1-59259-179-5:203

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-952-0

  • Online ISBN: 978-1-59259-179-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics