Skip to main content

Production of Chimeras Derived from Murine Embryonic Stem Cells

  • Protocol
Transgenesis Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 180))

Abstract

Embryonic stem (ES) cells are undifferentiated cells derived from early mouse embryos, which under appropriate culture conditions proliferate continuously in vitro. ES cells have been demonstrated to be pluripotent in vivo from their capacity to form teratocarcinomas and germline chimeric mice (13 see Fig. 1), depending on the environment into which the stem cells are introduced. When ES cells are introduced under the kidney capsule, in vivo differentiation is chaotic with the teratocarcinoma composed of a wide variety of different cell types. If, however, the stem cells are returned into a preimplantation mouse embryo, in vivo differentiation proceeds in a normal and organized manner, and the ES cells colonize the three primary cell lineages of the developing embryo: the primitive ectoderm, endoderm, and mesoderm. This leads to the formation of chimeric offspring composed of cells of two different genetic constitutions: the host embryonic cells and those derived from the ES cells.

A male germline chimera transmitting the dominant black agouti coat color genotype derived from the 129/Sv ES cells to all offspring, after mating with an albino MF1 female. The chimera was produced following the injection of XY stem cells into a presumed XX host blastocyst, from the albino MF1 mouse strain. The male stem cells resulted in the “sex conversion” of the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  2. Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  3. Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309,255, 256.

    Article  PubMed  Google Scholar 

  4. Evans, M., Bradley, A., and Robertson, E. (1985) EK cell contribution to chimeric mice: from tissue culture to sperm, in Genetic Manipulation of the Early Mammalian Embryo, Banbury report 20 (Costantini, F. and Jaenisch, R., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 93–102.

    Google Scholar 

  5. Beddington, R. S. P. and Robertson, E. J. (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733–737.

    PubMed  CAS  Google Scholar 

  6. Suemori, H., Kadodawa, Y., Goto, K., Araki, I., Kondoh, H., and Nakatsuji, N. (1990) A mouse embryonic stem cell line showing pluripotency of differentiation in early embryos and ubiquitous β-galactosidase expression. Cell Diff. Dev. 29,181–186.

    Article  CAS  Google Scholar 

  7. Nagy, A., Gocza, E., Merentes Diaz, E., Prideaux, V. R., Ivanyi, E., Markkula, M., and Rossant, J. (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821.

    PubMed  CAS  Google Scholar 

  8. Ueda, O., Jishage, K., Kamada, N., Uchida, S., and Suzuki, H. (1995) Production of mice entirely derived from embryonic stem (ES) cell with many passages by coculture of ES cells with cytochalasin B induced tetraploid embryos. Exp. Anim. 44,205–210.

    Article  PubMed  CAS  Google Scholar 

  9. Wang, Z.-Q., Kiefer, F., Urbanek, P., and Wagner, E. F. (1997) Generation of completely embryonic stem cell-derived mutant mice using tetraploid blastocyst injection. Mech. Dev. 62,137–145.

    Article  PubMed  CAS  Google Scholar 

  10. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428.

    Article  PubMed  CAS  Google Scholar 

  11. Robertson, E. J. and Bradley, A. (1986) Production of permanent cell lines from early embryos and their use in studying developmental problems, in Experimental Approaches to Mammalian Embryonic Development (Rossant, J. and Pederson, R. A., eds.), Cambridge University Press, Cambridge, UK, pp. 475–191.

    Google Scholar 

  12. Hardy, K., Carthew, P., Handyside, A. H., and Hooper, M. L. (1990) Extragonadal teratocarcinoma derived from embryonal stem cells in chimaeric mice. J. Pathol. 160,71–76.

    Article  PubMed  CAS  Google Scholar 

  13. Wood, S. A., Allen, N. D., Rossant, J., Auerbach, A., and Nagy, A. (1993) Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature 365, 87–89.

    Article  PubMed  CAS  Google Scholar 

  14. Wood, S. A., Pascoe, W. S., Schmidt, C., Kemler, R., Evans, M. J., and Allen, N. D. (1993) Simple and efficient production of embryonic stem cell-embryo chimeras by coculture. Proc. Natl. Acad. Sci. USA 90,4582–4585.

    Article  PubMed  CAS  Google Scholar 

  15. Hooper, M. L. (1992) in Embryonal Stem Cells: Introducing Planned Changes into the Germline (Evans, H. J., ed.), Harwood Academic, Switzerland, p. 147.

    Google Scholar 

  16. Whittingham, D. G. (1971) Culture of mouse ova. J. Reprod. Fertil. Suppl. 14,7–21.

    Google Scholar 

  17. Fulton, B. P. and Whittingham, D. G. (1978) Activation of mammalian oocytes by intracellular injection of calcium. Nature 273,149–151.

    Article  PubMed  CAS  Google Scholar 

  18. Bradley, A. (1987) Production and analysis of chimaeric mice, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (Robertson, E. J., ed.), IRL, Oxford, UK, pp. 113–151.

    Google Scholar 

  19. Lallemand, Y. and Brulet, P. (1990). An in situ assessment of the routes and extents of colonisation of the mouse embryo by embryonic stem cells and their descendents. Development 110, 1241–1248.

    PubMed  CAS  Google Scholar 

  20. Yagi, T., Tokunaga, T., Furuta, Y., Nada, S., Yoshida, M., Tsukada, T., Saga, Y., Takeda, N., Ikawa, Y., and Aizawa, S. (1993) A novel ES cell line, TT2, with high germline-differentiating potency. Anal. Biochem. 214, 70–76.

    Article  PubMed  CAS  Google Scholar 

  21. Fujii, J. T. and Martin, G. R. (1983) Developmental potential of teratocarcinoma stem cells in utero following aggregation with cleavage-stage mouse embryos. J. Embryol. Exp. Morphol. 74, 79–96.

    PubMed  CAS  Google Scholar 

  22. Lewis, N. E. and Rossant, J. (1982) Mechanism of size regulation in mouse embryo aggregates. J. Embryol. Exp. Morph. 72,169–181.

    PubMed  CAS  Google Scholar 

  23. Tarkowski, A. K., Witkowska, A., and Opas, J. (1977) Development of cytochalasin Binduced tetraploid and diploid/tetraploid mosaic mouse embryos. J. Embryol. Exp. Morphol. 41,47–64.

    PubMed  CAS  Google Scholar 

  24. Eggan, K., Akutsu, H., Loring, J., Jackson-Grusby, L. Klemm, M., Rideout 3rd, W. M., Yanagimachi, R., and Jaenisch, R. (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl. Acad. Sci. USA 98, 6209–6214.

    Article  PubMed  CAS  Google Scholar 

  25. Robertson, E. J. (1986) Pluripotential stem cell lines as a route into the mouse germ line. Trends Genet. 2, 9–13.

    Article  Google Scholar 

  26. Wells, D. N. (1991) Studies on the isolation of murine and ovine embryonic stem cells. PhD thesis, University of Edinburgh, Edinburgh, UK.

    Google Scholar 

  27. Stewart, C. L., Gadi, I., and Bhatt, H. (1994) Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161, 626–628.

    Article  PubMed  CAS  Google Scholar 

  28. Stewart, T. A. and Mintz, B. (1981) Successive generations of mice produced from an established culture line of euploid teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 78,6314–6318.

    Article  PubMed  CAS  Google Scholar 

  29. Stewart, T. A. and Mintz, B. (1982) Recurrent germ-line transmission of the teratocarcinoma genome from the METT-1 culture line to progeny in vivo. J. Exp. Zool. 224,465–69.

    Article  PubMed  CAS  Google Scholar 

  30. Robertson, E. J., Evans, M. J., and Kaufman, M. H. (1983) X-chromosome instability in pluripotential stem cell lines derived from parthenogenetic embryos. J. Embryol. Exp. Morphol. 74, 297–309.

    PubMed  CAS  Google Scholar 

  31. Suda, Y., Suzuki, M., Ikawa, Y., and Aizawa, S. (1987) Mouse embryonic stem cells exhibit indefinite proliferative potential. J. Cell. Physiol. 133, 197–201.

    Article  PubMed  CAS  Google Scholar 

  32. Baribault, H. and Kemler, R. (1989) Embryonic stem cell culture and gene targeting in transgenic mice. Mol. Biol. Med. 6, 481–492.

    PubMed  CAS  Google Scholar 

  33. Lederman, B. and Burki, K. (1991) Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Exp. Cell. Res. 197, 254–258.

    Article  Google Scholar 

  34. Schwartzberg, P. L., Goff, S. P., and Robertson, E. J. (1989) Germ-line transmission of a c-alb mutation produced by targeted gene disruption in ES cells. Science 246, 799–803.

    Article  PubMed  CAS  Google Scholar 

  35. DeChiara, T. M., Efstratiadis, A., and Robertson, E. J. (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 78–80.

    Article  PubMed  CAS  Google Scholar 

  36. Eicher, E. M. and Washburn, L. L. (1978) Assignment of genes to regions of mouse chromosomes. Proc. Natl. Acad. Sci. USA 75, 946–950.

    Article  PubMed  CAS  Google Scholar 

  37. McLaren, A. and Buehr, M. (1981) GPI expression in female germ cells of the mouse. Gen. Res. Cambridge 37, 303–309.

    Article  CAS  Google Scholar 

  38. Gossler, A., Joyner, A. L., Rossant, J., and Skarnes, W. C. (1989) Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244,463–65.

    Article  PubMed  CAS  Google Scholar 

  39. Rossant, J. and Joyner, A. L. (1989) Towards a molecular-genetic analysis of mammalian development. Trends Genet. 5, 277–283.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Wells, D. (2002). Production of Chimeras Derived from Murine Embryonic Stem Cells. In: Clarke, A.R. (eds) Transgenesis Techniques. Methods in Molecular Biology, vol 180. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-178-7:127

Download citation

  • DOI: https://doi.org/10.1385/1-59259-178-7:127

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-696-3

  • Online ISBN: 978-1-59259-178-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics