Skip to main content

In Vitro Isolation of Murine Embryonic Stem Cells

  • Protocol
Transgenesis Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 180))

  • 2207 Accesses

Abstract

Embryonic stem (ES) cells are derived directly from those undifferentiated progenitor cells of early mouse embryos that have the developmental potential to subsequently form all the tissues of the fetus itself. With appropriate culture conditions, these embryonic cells can be maintained continuously in an undifferentiated state in vitro and form permanent ES cell lines (1,2) (see Note 1). When introduced into mouse blastocysts or aggregated with morulae, however, the ES cells are capable of responding to in vivo developmental signals and participate in normal embryogenesis. The stem cells differentiate and contribute to all the tissues of the fetus (3), and occasionally to the trophectodermal and primitive endodermal lineages of the extraembryonic membranes (4), leading to the formation of chimeric offspring. The full demonstration of their pluripotent potential is seen in the capacity of ES cells also to colonize the germline in chimeras, and form fully functional gametes (3). More remarkably, some ES cell lines are capable of supporting complete fetal development, following aggregation with tetraploid embryos, and generate fertile adult mice that are entirely ES cell derived (5). One of the major applications of ES cells is in providing a powerful approach for the introduction of novel genetic change into the mouse genome. While the ES cells are in culture, specific genes of interest can be modified in a desired manner with homologous recombination (gene targeting) technology, and by utilizing their pluripotent potential, the ES cells can be used as carriers of this genetic change through the germline and into subsequent generations of mice (6) (see Chapters 7 and 8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  2. Martin, G.R.(1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad.Sci. USA 78,7634–7638.

    Google Scholar 

  3. Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309,255, 2256.

    Article  PubMed  CAS  Google Scholar 

  4. Beddington, R. S. P. and Robertson, E. J. (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo.Development 105, 733–737.

    PubMed  CAS  Google Scholar 

  5. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428.

    Article  PubMed  CAS  Google Scholar 

  6. Hooper, M. L. (1992) in Embryonal Stem Cells: Introducing Planned Changes into the Germline (Evans, H. J., ed.), Harwood Academic, Switzerland.

    Google Scholar 

  7. Matsui, Y., Zsebo, K., and Hogan, B. L. M. (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells. Cell 70, 841–847.

    Article  PubMed  CAS  Google Scholar 

  8. Resnick, J. L., Bixler, L. S., Cheng, L., and Donovan, P. J. (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359,550, 550, 551.

    Article  PubMed  CAS  Google Scholar 

  9. Stewart, C. L., Gadi, I., and Bhatt, H. (1994) Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161,626–628.

    Article  PubMed  CAS  Google Scholar 

  10. Labosky, P. A., Barlow, D. P., and Hogan, B. L. M. (1994) Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120, 3197–3204.

    PubMed  CAS  Google Scholar 

  11. Handyside, A. H., O’Neill, G. T., Jones, M., and Hooper, M. L. (1989) Use of BRL-conditioned medium in combination with feeder layers to isolate a diploid embryonal stem cell line. Roux’s Arch. Dev. Biol. 198,48–55.

    Article  Google Scholar 

  12. Oshima, R. (1978) Stimulation of the clonal growth and differentiation of feeder layer dependent mouse embryonal carcinoma cells by β-mercaptoethanol. Differentiation 11, 149–155.

    Article  PubMed  CAS  Google Scholar 

  13. Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M.,and Rogers, D. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690.

    Article  PubMed  CAS  Google Scholar 

  14. Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., Gearing, D. P., Wagner, E. F., Metcalf, D., Nicola, N. A., and Gough, N. M. (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687.

    Article  PubMed  CAS  Google Scholar 

  15. Hogan, B., Constantini, F., and Lacy, E., eds. (1986) Chemicals, supplies and solutions, Manipulating the Mouse Embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 269–277.

    Google Scholar 

  16. Martin, G. R., Jakobovits, A., and Joyner, A. (1984) Factors that affect the growth of teratocarcinoma and embryonic stem cells. J. Embryol. Exp. Morphol. 82(Suppl.), 147.

    Google Scholar 

  17. Wells, D. N., McWhir, J., Hooper, M. L., and Wilmut, I. (1991) Factors influencing the isolation of murine embryonic stem cells. Theriogenology 35, 293.

    Article  Google Scholar 

  18. Martin, G. R. and Evans, M. J. (1975) Differentiation of clonal lines of teratocarcinom a cells: formation of embryoid bodies in vitro. Proc. Natl. Acad. Sci. USA 72, 1441–1445.

    Article  CAS  Google Scholar 

  19. Rathjen, P. D., Toth, S., Willis A., Heath, J. K., and Smith, A. G. (1990) Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 62, 1105–1114.

    Article  PubMed  CAS  Google Scholar 

  20. Ogiso, Y., Kume, A., Nishimune, Y., and Matsushiro, A. (1982) Reversible and irreversible stages in the transition of cell surface marker during the differentiation of pluripotent teratocarcinoma cell induced with retinoic acid. Exp. Cell Res. 137, 365–372.

    Article  PubMed  CAS  Google Scholar 

  21. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp.Morphol. 87, 27–45.

    PubMed  CAS  Google Scholar 

  22. Suemori, H. and Nakatsuji, N. (1987) Establishment of the embryo-derived stem (ES) cell lines from mouse blastocysts: effects of the feeder cell layer. Dev.Growth Diff. 29, 133–139.

    Article  Google Scholar 

  23. Robertson, E. J. (1987) Embryo-derived stem cell lines, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (Robertson, E. J., ed.), IRL, Oxford,pp. 71–112.

    Google Scholar 

  24. Nichols, J., Evans, E. P., and Smith, A. G. (1990) Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity.Development 110, 1341–1348.

    PubMed  CAS  Google Scholar 

  25. Wobus, A. M., Holzhausen, H., Jakel, P., and Schoneich, J. (1984) Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp. Cell Res. 152,212–219.

    Article  PubMed  CAS  Google Scholar 

  26. Bergstrom, S. (1978) Experimentally delayed implantation, in Methods in Mammalian Reproduction (Daniel, J. C., ed.), Academic, NY, pp. 419–435.

    Google Scholar 

  27. Solter, D. and Knowles, B. B. (1975) Immunosurgery of mouse blastocyst. Proc.Natl. Acad. Sci. USA 72, 5099–5102.

    Article  PubMed  CAS  Google Scholar 

  28. Axelrod, H. R. and Lader, E. (1983) A simplified method for obtaining embryonic stem cell lines from blastocysts, in Cold Spring Harbor Conferences on Cell Proliferation Volume 10. Teratocarcinoma Stem Cells (Silver, L. M., Martin, G. R.,and Strickland, S., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor,NY, pp. 665–670.

    Google Scholar 

  29. Martin, G. R. and Lock, L. F. (1983) Pluripotent cell lines derived from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells, in Cold Spring Harbor Conferences on Cell Proliferation. Volume 10. Teratocarcinoma Stem Cells (Silver, L. M., Martin, G. R., and Strickland, S., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY,pp.635–646.

    Google Scholar 

  30. Mummery, C. L., Feyen, A., Freund, E., and Shen, S. (1990) Characteristics of embryonic stem cell differentiation: a comparison with two embryonal carcinoma cell lines. Cell Diff. Dev. 30,195–206.

    Article  CAS  Google Scholar 

  31. Brown, D. G., Warren, V. N., Pahlson, P., and Kimber, S. J. (1991) Carbohydrate antigens expressed in embryonic stem cells. I. Lacto and neo-lacto determinants.Histochem. J. 25,452–463.

    Article  Google Scholar 

  32. Pesce, M. and Schöler, H. R. (2000) Oct-4:Control of totipotency and germline determination. Mol. Reprod. Dev. 55,452–457.

    Article  PubMed  CAS  Google Scholar 

  33. Eistetter, H. R. (1989) Pluripotent embryonal stem cell lines can be established from disaggregated mouse morulae. Dev. Growth Diff. (31), 275–282.

    Article  Google Scholar 

  34. Gardner, R. L. (1985) Clonal analysis of early mammalian development. Philos.Trans. Royal Soc. London 312,163–178.

    Article  CAS  Google Scholar 

  35. Smith, A. G. and Hooper, M. L. (1987) Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol. 121, 1–9.

    Article  PubMed  CAS  Google Scholar 

  36. Hooper, M., Hardy, K., Handyside, A., Hunter, S., and Monk, M. (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326,292–295.

    Article  PubMed  CAS  Google Scholar 

  37. Gough, N. M., Williams R. L., Hilton, D. J., Pease, S., Willson, T. A., Stahl, J.,Gearing, D. P., Nicola, N. A., and Metcalf, D. (1989) LIF: a molecule with diver-gent actions on myeloid leukaemic cells and embryonic stem cells. Reprod. Fertil.Dev. 1,281–288.

    Google Scholar 

  38. Wobus, A. M., Guan, K., and Pich, U. (2001) In vitro differentiation of embryonic stem cells and analysis of cellular phenotypes, in:Gene Knockout Protocols (Tymms, M. J. and Kola, I., eds.), Humana Press, NJ, Meth. Mol. Biol. 158,263–286.

    Google Scholar 

  39. Robertson, E. J. and Bradley, A. (1986) Production of permanent cell lines from early embryos and their use in studying developmental problems, in:Experimental Approaches to Mammalian Embryonic Development (Rossant, J. and Pederson, R. A., eds.), Cambridge University Press, Cambridge, UK, pp. 475–49.

    Google Scholar 

  40. Nesbitt, M. N. and Franke, U. (1973) A system of nomenclature for band patterns of mouse chromosomes. Chromosoma 41, 145–158.

    Article  PubMed  CAS  Google Scholar 

  41. Kaufman, M. H., Robertson, E. J., Handyside, A. H., and Evans, M. J. (1983) Establishment of pluripotent cell lines from haploid mouse embryos. J. Embryol.Exp. Morphol. 73, 249–261.

    PubMed  CAS  Google Scholar 

  42. Evans, M., Bradley, A., and Robertson, E. (1985) EK cell contribution to chi-meric mice: from tissue culture to sperm, in Genetic Manipulation of the Early Mammalian Embryo, Banbury report 20 (Costantini, F. and Jaenisch, R., eds.),Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 93–102.

    Google Scholar 

  43. Mann, J. R., Gadi, I., Harbison, M. L., Abbondanzo, S. J., and Stewart, C. L.(1990) Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting. Cell 62, 251–260.

    Article  PubMed  CAS  Google Scholar 

  44. Copp, A. J. (1982) Effect of implantational delay on cellular proliferation in the mouse blastocyst. J. Reprod. Fertil. 66, 681–685.

    Article  PubMed  CAS  Google Scholar 

  45. Gardner, R. L., Davies, T. J., and Carey, M. S. (1988) Effect of delayed implantation on differentiation of the extra-embryonic endoderm in the mouse blastocyst.Placenta 9, 343–359.

    Article  PubMed  CAS  Google Scholar 

  46. Moreau, J.-F., Donaldson, D. D., Bennet, F., Witek-Giannotti, J., Clark, S. C., and Wong, G. G. (1988) Leukaemia inhibitory factor is identical to the myeloid growth factor human interleukin for DA cells. Nature 336, 690–692.

    Article  PubMed  CAS  Google Scholar 

  47. Gough, N. M., Gearing, D. P., King, J. A., Willson, T. A., Hilton, D. J., Nicola, N.A., and Metcalf, D. (1988) Molecular cloning and expression of the human homo-logue of the murine gene encoding myeloid leukemia-inhibitory factor. Proc. Natl.Acad. Sci. USA 85,2623–2627.

    Article  PubMed  CAS  Google Scholar 

  48. Wells, D. N. (1991) Studies on the isolation of murine and ovine embryonic stem cells. PhD thesis, University of Edinburgh, Edinburgh, Scotland.

    Google Scholar 

  49. McWhir, J., Schnieke, A. E., Ansell, R., Wallace, H., Colman, A., Scott, A. R., and Kind, A. J. (1996) Selective ablation of differentiated cells permits isolation of embryonic stem cell lines from murine embryos with a non-permissive genetic background. Nat. Genet. 14, 223–226.

    Article  PubMed  CAS  Google Scholar 

  50. Rathjen, P. D., Nichols, J., Toth, S., Edwards, D. R., Heath, J. K., and Smith, A. G.(1990) Developmentally programmed induction of differentiation inhibiting activity and control of stem cell populations. Genes Dev. 4, 2308–2318.

    Article  PubMed  CAS  Google Scholar 

  51. Pease, S., Braghetta P., Gearing, D., Grail, D., and Williams, R. L. (1990) Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev. Biol. 141, 344–352.

    Article  PubMed  CAS  Google Scholar 

  52. Lederman, B. and Burki, K. (1991) Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Exp. Cell. Res. 197,254–258.

    Article  Google Scholar 

  53. Ginsberg, M., Snow, M. H. L., and McLaren, A. (1990) Primordial germ cells in the mouse embryo during gastrulation. Development 110,521–528.

    Google Scholar 

  54. Tam, P. P. L. and Snow, M. H. L. (1981) Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J. Embryol. Exp.Morphol. 64, 133–147.

    PubMed  CAS  Google Scholar 

  55. Flanagan, J. G. and Leder, P. (1990) The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. Cell 63, 185–194.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Wells, D. (2002). In Vitro Isolation of Murine Embryonic Stem Cells. In: Clarke, A.R. (eds) Transgenesis Techniques. Methods in Molecular Biology, vol 180. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-178-7:093

Download citation

  • DOI: https://doi.org/10.1385/1-59259-178-7:093

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-696-3

  • Online ISBN: 978-1-59259-178-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics