Skip to main content

Adenoviral Infection

  • Protocol
Transgenesis Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 180))

  • 2193 Accesses

Abstract

Replication-defective adenoviruses (Ads), in which the E1 A and E1B genes essential for replication are deleted, have several advantages as the vectors for introducing foreign genes into host cells. They are able to infect a large range of host cells and to transfer genes into nonproliferating cells without the replication of viral genome. However, there had been no reports of generating transgenic animals using this type of vector until we demonstrated that Ad-mediated transgenesis is possible and has distinct advantages over conventional microinjection and retrovirus vectors (1). The major advantage compared to the microinjection method is that the methodology is relatively simple so that sophisticated skill and an apparatus for micromanipulation are not needed and a large number of eggs can be handled simultaneously. Instead, you will need some expertise for constructing a recombinant Ad (rAd) and also for handling zona-free eggs. The former aspect is described herein only briefly; for details see refs. 24.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsukui, T., Kanegae, Y., Saito, I., and Toyoda, Y. (1996) Transgenesis by aden-ovirus-mediated gene transfer into mouse zona-free eggs. Nat. Biotech. 14, 982–985.

    Article  CAS  Google Scholar 

  2. Tsukui, T., Miyake, S., Azuma, S., Ichise, H., Saito, I., and Toyoda, Y. (1995) Gene transfer and expression in mouse preimplantation embryos by recombinant adenovirus vector. Mol. Reprod. Dev. 42, 291–297.

    Article  PubMed  CAS  Google Scholar 

  3. Miyake, S., Makimura, M., Kanegae, Y., Harada, S., Sato, Y., Takamori, K., Tokuda, C., and Saito, I. (1996) Efficient generation of recombinant adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc. Natl. Acad. Sci. USA 93, 1320–1324.

    Article  PubMed  CAS  Google Scholar 

  4. Kanegae, Y., Lee, G., Sato, Y., Tanaka, M., Nakai, M., Sakaki, T., Sugano, S., and Saito, I. (1995) Efficient gene activation in mammalian cells by using recom-binant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res. 23, 3816–3821.

    Article  PubMed  CAS  Google Scholar 

  5. McGrory, W. J., Bautista, D. S., and Graham, F. L. (1988) A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163, 614–617.

    Article  PubMed  CAS  Google Scholar 

  6. Stratford-Perricaudet, L. D., et al. (1990) Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector. Hum. Gene Ther. 1, 241–256.

    Article  PubMed  CAS  Google Scholar 

  7. Niwa, H., Yamamura, K., and Miyazaki, J. (1991) Efficient selection for high expression transfectants with a novel eukaryotic vector. Gene 108, 193–200.

    Article  PubMed  CAS  Google Scholar 

  8. Toyoda, Y., Yokoyama, M., and Hosi, T. (1971) Studies on the fertilization of mouse eggs in vitro. Jpn. J. Anim. Reprod. 16, 147–151.

    Google Scholar 

  9. Hogan, B., Beddington, R., Constantini, F., and Lancy, E. (1994) Manipulating the Mouse Enbryo, 2nd Ed., Cold Spring Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  10. Hoshi, M. and Toyoda, Y. (1985) Effect of EDTA on the preimplantation development of mouse embryos fertilized in vitro. Jpn. J. Zootech. Sci. 56, 931–937.

    CAS  Google Scholar 

  11. Takeda, S. and Toyoda, Y. (1991) Expression of SV40-lacZ gene in mouse preimplantation embryos after pronuclear microinjection. Mol. Reprod. Dev. 30, 90–94.

    Article  PubMed  CAS  Google Scholar 

  12. Tavares, A. T., Tsukui, T., and Izpisua-Belmonte, J. C. (2000) Evidence that members of the Cut/Cux/CDP family may be involved in AER positioning and polarizing activity during chick limb development. Development 127, 5133–5144.

    PubMed  CAS  Google Scholar 

  13. Sato, Y., Tanaka, K., et al. (1998) Enhanced and specific gene expression via tissue-specific production of Cre recombinase using adenovirus vector. Biochem. Biophys. Res. Com. 244, 455–462.

    Article  PubMed  CAS  Google Scholar 

  14. Shibata, H., Noda, T., et al. (1997) Rapid Colorectal Adenoma Formation Initiated by Conditional Targeting of the Apc Gene. Science 278, 120–123.

    Article  PubMed  CAS  Google Scholar 

  15. Capdevila, J. Tsukui, T., Izpisua-Belmonte, J. C., et al. (1999) Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by Gremlin. Mol. Cell 4, 839–849.

    Article  PubMed  CAS  Google Scholar 

  16. Rodriguez-Esteban, C., Tsukui, T., Izpisua-Belmonte, C., et al. (1999) The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398, 814–818.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Tsukui, T., Toyoda, Y. (2002). Adenoviral Infection. In: Clarke, A.R. (eds) Transgenesis Techniques. Methods in Molecular Biology, vol 180. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-178-7:073

Download citation

  • DOI: https://doi.org/10.1385/1-59259-178-7:073

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-696-3

  • Online ISBN: 978-1-59259-178-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics