PCR Screening in Signature-Tagged Mutagenesis of Essential Genes

  • Dario E. Lehoux
  • Roger C. Levesque
Part of the Methods in Molecular Biology™ book series (MIMB, volume 192)


Signature tagged-mutagenesis (STM) is a functional genomics technique that identifies microbial genes required for infection within an animal host, or within host cell (1,2). As first described by Hensel et al., 1995 (3), transposon mutants are generated and each one tagged with a unique DNA sequence. Originally, STM used comparative hybridization to isolate mutants unable to survive in specified environmental conditions and to identify genes critical for survival in the host (3). The original STM has been modified to use defined oligonucleotides for tag construction into mini-Tn5 and to use polymerase chain reaction (PCR) instead of hybridization for rapid screening of bacterial mutants in vivo (4). The modified STM technique has been called PCR-based signature-tagged mutagenesis (PBSTM).


Polymerase Chain Reaction Ethidium Bromide Solution Kanamycin Concentration Touchdown Polymerase Chain Reaction Dipotassium Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shea, J. E., Santangelo, J. D., and Feldman, R. G. (2000) Signature-tagged mutagenesis in the identification of virulence genes in pathogens. Curr. Opin. Microbiol. 3, 451–458.CrossRefPubMedGoogle Scholar
  2. 2.
    Lehoux, D. E. and Levesque, R. C. (2000) Detection of genes essential in specific niches by signature-tagged mutagenesis. Curr. Opin. Biotechnol. 11, 434–439.CrossRefPubMedGoogle Scholar
  3. 3.
    Hensel, M., Shea, J. E., Gleeson, C., Jones, M. D., Dalton, E., and Holden, D. W. (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403.CrossRefPubMedGoogle Scholar
  4. 4.
    Lehoux, D. E., Sanschagrin, F., and Levesque, R. C. (1999) Defined oligonucleotide tag pools and PCR screening in signature-tagged mutagenesis of essential genes from bacteria. Biotechniques 26, 473–478, 480.PubMedGoogle Scholar
  5. 5.
    Chiang, S. L., Mekalanos, J. J., and Holden, D. W. (1999) In vivo genetic analysis of bacterial virulence. Annu. Rev. Microbiol. 53, 129–154.CrossRefPubMedGoogle Scholar
  6. 6.
    Dieffenbach, W. C. and Dveksler, G. S., eds. (1995) PCR Primer: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p. 714.Google Scholar
  7. 7.
    Breslauer, K. J., Frank, R., Blocker, H., and Marky, L. A. (1986) Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750.CrossRefPubMedGoogle Scholar
  8. 8.
    Rychlik, W. (1993) Selection of primer chain reaction, in PCR protocols: current application, W.H. Press, Editor.: Totowa NJ.Google Scholar
  9. 9.
    Kwok, S., Kellogg, D. E., McKinney, N., Spasic, D., Goda, L., Levenson, C., and Sninsky, J. J. (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucl. Acids Res. 18, 999–1005.CrossRefPubMedGoogle Scholar
  10. 10.
    De Lorenzo, V., Herrero, M., Jakubzik, U., and Timmis, K. N. (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J. Bacteriol. 172, 6568–6572.PubMedGoogle Scholar
  11. 11.
    Simon, R., Priefer, U., and Pühler, A. (1983) A broad range mobilization system for in vitro genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1, 784–791.CrossRefGoogle Scholar
  12. 12.
    Sambrook, J., Fritsch, E. F., and Maniatis, T., (eds) (1989) Molecular Cloning: A Laboratory Manual, 2nd ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  13. 13.
    Dewar, K., Sabbagh, L., Cardinal, G., Veilleux, F., Sanschagrin, F., Birren, B., and Levesque, R. C. (1998) Pseudomonas aeruginosa PAO1 bacterial artificial chromosomes: strategies for mapping, screening, and sequencing 100 kb loci of the 5.9 Mb genome. Microb. Comp. Genom. 3, 105–117.Google Scholar
  14. 14.
    Darwin, A. J. and Miller, V. L. (1999) Identification of Yersinia enterocolitica genes affecting survival in an animal host using signature-tagged transposon mutagenesis. Mol. Microbiol. 32, 51–62.CrossRefPubMedGoogle Scholar
  15. 15.
    Camacho, L. R., Ensergueix, D., Perez, E., Gicquel, B., and Guilhot, C. (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257–267.CrossRefPubMedGoogle Scholar
  16. 16.
    Chiang, S. L. and Mekalanos, J. J. (1998) Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol. Microbiol. 27, 797–805.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Dario E. Lehoux
    • 1
  • Roger C. Levesque
    • 1
  1. 1.Health and Life Sciences Research CenterUniversité LavalSainte-FoyCanada

Personalised recommendations