Advertisement

PCR-Mediated Recombination

A General Method Applied to Construct Chimeric Infectious Molecular Clones
  • Guowei Fang
  • Barbara Weiser
  • Aloise Visosky
  • Timothy Moran
  • Harold Burger
Part of the Methods in Molecular Biology™ book series (MIMB, volume 192)

Abstract

Molecular cloning has proven to be a powerful tool in biology, and chimeric clones are useful in a variety of fields including microbial pathogenesis and the development of vaccines. Chimeras can be created from DNA by using conventional cloning techniques, specifically restriction cleavage and DNA ligation. Such techniques, however, have limitations; most commonly, limitations result from the lack of restriction sites to provide points of entry for inserts in the desired regions or the multiplicity of restriction sites in other regions of the DNA. Because recombinant DNA molecules may be created during polymerase chain reaction (PCR) when two or more different DNA sequences are brought together (1,2), PCR-mediated recombination has been exploited to join DNA fragments of a few hundred bases (3-8). There are two drawbacks to these methods. First, they often involve multiple steps, and second, sequence errors frequently are introduced by certain thermostable polymerases during the PCR reaction (9,10).

Keywords

Polymerase Chain Reaction Cycle Human Dermal Fibroblast Cell Reverse Transcriptase Assay High Fidelity Polymerase Chain Reaction Asymmetric Polymerase Chain Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.CrossRefPubMedGoogle Scholar
  2. 2.
    Meyerhans, A., Vartanian, J. P., and Wain-Hobson, S. (1990) DNA recombination during PCR. Nucl. Acids Res. 18, 1687–1691.CrossRefPubMedGoogle Scholar
  3. 3.
    Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J., and Pease, L. R. (1989) Engineering hybrid gene without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68.CrossRefPubMedGoogle Scholar
  4. 4.
    Horton, R. M., Cai, Z. L., Ho, S. N., and Pease, L. R. (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8, 528–535.PubMedGoogle Scholar
  5. 5.
    Yolov, A. A. and Shabarova, Z. A. (1990) Constructing DNA by polymerase recombination. Nucl. Acids Res. 18, 3483–3486.CrossRefGoogle Scholar
  6. 6.
    Klug, J., Wolf, M., and Beato, M. (1991) Creating chimeric molecules by PCR directed homologous DNA recombination. Nucl. Acids Res. 19, 2793.CrossRefPubMedGoogle Scholar
  7. 7.
    Gu, H., Planas, J., Gomez, R., and Wilson, D. J. (1991) Full length mouse glycoghorin gene constructed using recombinant polymerase chain reaction. Biochem. Biophy. Res. Commun. 177, 202–208.CrossRefGoogle Scholar
  8. 8.
    Sandhu, G. S., Aleff, R. A., and Kline, B. C. (1992) Dual asymmetric PCR: one-step construction of synthetic genes. Biotechniques 12, 14–16.PubMedGoogle Scholar
  9. 9.
    Eckert, K. A. and Kunkel, T. A. (1991) DNA polymerase fidelity and the polymerase chain reaction. PCR Meth. Appl. 1, 17–24.Google Scholar
  10. 10.
    Mattila, P., Korpela, J., Tenkanen, T., and Pitkanen, K. (1991) Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase-an extremely heat stable enzyme with proofreading activity. Nucl. Acids Res. 19, 4967–4973.CrossRefPubMedGoogle Scholar
  11. 11.
    Coffin, J. M. (1995) HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267, 483–489.CrossRefPubMedGoogle Scholar
  12. 12.
    Chun, T. W., Carruth, L., Finzi, D., Shen, X., DiGiuseppe, J. A., Taylor, H., et al. (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188.CrossRefPubMedGoogle Scholar
  13. 13.
    Myers, G. Korber, B., Foley, B., Jeang, K. T., Mellors, J. W., and Wain-Hobson, S. (1996) Human Retroviruses and AIDS. Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
  14. 14.
    Fang, G., Weiser, B., Visosky, A., Townsend, L., and Burger, H. (1996) Molecular cloning of full-length HIV-1 genomes directly from plasma viral RNA. J. AIDS 12, 352–357.Google Scholar
  15. 15.
    Fang, G., Burger, H., Grimson, R., Tropper, P., Nachman, S., Mayers, D., et al. (1995) Maternal plasma human immunodeficiency virus type 1 RNA level: a determinant and projected threshold for mother-to-child transmission. Proc. Natl. Acad. Sci. USA 92, 12,100–12,104CrossRefPubMedGoogle Scholar
  16. 16.
    Salminen, M. O., Koch, C., Sanders-Buell, E., Ehrenberg, P. K., Michael, N. L., Carr, J. K., et al. (1995) Recovery of virtually full-length HIV-1 provirus of diverse subtypes from primary virus cultures using the polymerase chain reaction. Virology 213, 80–86.CrossRefPubMedGoogle Scholar
  17. 17.
    Lundberg, K. S., Shoemaker, D. D., Adams, M. W., Short, J. M., Sorge, J. A., and Mathur, E. J. (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108, 1–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Flaman, J. M., Frebourg, T., Moreau, V., Charbonnier, F., Martin, C., Ishioka, C., et al. (1994) A rapid PCR fidelity assay. Nucl. Acids Res. 22, 3259–3260.CrossRefPubMedGoogle Scholar
  19. 19.
    Horton, R. M. (1995) SOEing together tailor-made genes. Mol. Biotech. 3, 93–99.CrossRefGoogle Scholar
  20. 20.
    Fang, G., Weiser, B., Visosky, A., Moran, T., and Burger, H. (1999) PCR-mediated recom-bination: a general method applied to construct chimeric infectious molecular clones of plasma-derived HIV-1 RNA. Nat Med. 5, 239–242.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Guowei Fang
    • 1
  • Barbara Weiser
    • 1
  • Aloise Visosky
    • 1
  • Timothy Moran
    • 1
  • Harold Burger
    • 1
  1. 1.Wadsworth CenterAlbany

Personalised recommendations