Advertisement

Long Distance Reverse-Transcription PCR

  • Volker Thiel
  • Jens Herold
  • Stuart G. Siddell
Part of the Methods in Molecular Biology™ book series (MIMB, volume 192)

Abstract

Polymerase chain reaction (PCR) has been applied to the amplification of long DNA fragments from a variety of sources, including genomic, mitochondrial, and viral DNAs (1-5). We have adapted the concept of long PCR technology to reverse-transcription (RT) PCR (6). Here, we describe the parameters critical in producing RT-PCR products of up to 20 kbp. The nature of RT-PCR requires the synthesis of a cDNA by RT prior to its amplification in the PCR reaction. Thus, we focus on the three steps of RT-PCR: the preparation and requirements of the RNA template, the reverse transcription reaction, and the amplification of the cDNA by PCR.

Keywords

Polymerase Chain Reaction Magnetic Bead Polymerase Chain Reaction Reaction Polymerase Chain Reaction Primer Reverse Transcription Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barnes, W. M. (1994) PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc. Natl. Acad. Sci. USA 91, 2216–2220.CrossRefPubMedGoogle Scholar
  2. 2.
    Cheng, S., Fockler, C., Barnes, W. M., and Higuchi, R. (1994) Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. USA 91, 5695–5699.CrossRefPubMedGoogle Scholar
  3. 3.
    Cheng, S., Chang, S.Y., Gravitt, P., and Respess, R. (1994) Long PCR. Nature 369, 684–685.CrossRefPubMedGoogle Scholar
  4. 4.
    Cheng, S., Higuchi, R., and Stoneking, M. (1994) Complete mitochondrial genome amplification. Nature Genet. 7, 350–351.CrossRefPubMedGoogle Scholar
  5. 5.
    Cheng, S., Chen, Y., Monforte, J. A., Higuchi, R., and Van Houten, B. (1995) Template integrity is essential for PCR amplification of 20-to 30-kb sequences from genomic DNA. PCR Meth. Appl. 4, 294–298.Google Scholar
  6. 6.
    Thiel, V., Rashtchian, A., Herold, J., Schuster, D. M., Guan, N., and Siddell, S. G. (1997) Effective amplification of 20-kb DNA by reverse transcription PCR. Analyt. Biochem. 252, 62–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Herold, J., Raabe, T., and Siddell, S. (1993) Molecular analysis of the human coronavirus (strain 229E) genome. Arch.Virol. [Suppl] 7, 63–74.Google Scholar
  8. 8.
    Raabe, T., Schelle-Prinz, B., and Siddell, S. G. (1990) Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E. J. Gen. Virol. 71, 1065–1073.CrossRefPubMedGoogle Scholar
  9. 9.
    Siddell, S. (1983) Coronavirus JHM: coding assignments of subgenomic mRNAs. J. Gen.Virol. 64, 113–125.CrossRefPubMedGoogle Scholar
  10. 10.
    Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. D., Smith, J. A., and Struhl, K. (1987) Current Protocols in Molecular Biology, (Benson Chanda, V., ed.), Wiley, New York.Google Scholar
  11. 11.
    Nathan, M., Mertz, L. M., and Fox, D. K. (1995) Optimizing Long RT-PCR. Focus 17, 78–80.Google Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Volker Thiel
    • 1
  • Jens Herold
    • 1
  • Stuart G. Siddell
    • 1
  1. 1.Institute of Virology and ImmunologyUniversity of WürzburgWürzburgGermany

Personalised recommendations