XL PCR Amplification of Long Targets from Genomic DNA

  • Lori A. Kolmodin
Part of the Methods in Molecular Biology™ book series (MIMB, volume 192)


Long polymerase chain reaction (PCR)>(1 5), specifically, XL PCR (Extra-Long Polymerase Chain Reaction), has enabled amplification of expanded trinucleotide repeats of the neuromuscular disease myotonic dystrophy (6) a 9-kb HIV-1 provirus from primary isolate DNA (7), 24.2-kb fragments from nanogram quantities of genomic DNA for DNA damage repair (8), and up to 42 kb of human genomic DNA (4). The capability of the long PCR process stems through the use of:


Polymerase Chain Reaction Polymerase Chain Reaction Amplification Standard Polymerase Chain Reaction GeneAmp Polymerase Chain Reaction System Ethidium Bromide Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cheng, S., Chen, Y., Monforte, J. A., Higuchi, R., and Van Houten, B. (1995) Template integrity is essential for PCR amplification of 20-to 30-kb sequences from genomic DNA.PCR Meth. Appli. 4, 294–298.Google Scholar
  2. 2.
    Cheng, S. (1995) Longer PCR amplifications, in PCR Strategies (Innis M. A., Gelfand, D. H., and Sninsky, J. J., eds.) Academic, San Diego, CA, pp. 313–324.Google Scholar
  3. 3.
    Cheng, S., Chang, S.-Y., Gravitt, P., and Respess, R. (1994) Long PCR. Nature 369, 684–685.CrossRefPubMedGoogle Scholar
  4. 4.
    Cheng, S., Fockler, C., Barnes, W. M., and Higuchi, R. (1994) Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. USA 91, 5695–5699.CrossRefPubMedGoogle Scholar
  5. 5.
    Barnes, W. M. (1994) PCR amplification of up to 35 kb with high fidelity and high yield from λ bacteriophage templates. Proc. Natl. Acad. Sci. USA 91, 2216–2220.CrossRefPubMedGoogle Scholar
  6. 6.
    Brugnoni, R., Morandi, L., Brambati, B., Briscioli, V., Cornelio, F., and Mantegazza, R. (1998) A new non-radioactive method for the screening and prenatal diagnosi of myotonic dystrophy patients. J. Neurol. 245, 289–293.CrossRefPubMedGoogle Scholar
  7. 7.
    Salminen, M. O., Koch, C., Sanders-Buell, E., Ehrenberg, P. K., Michael, N. L., Carr, J. K., Burke, D. S., and McCutchan, F. E. (1995) Recovery of virtrually full length HIV-1 provirus of Diverse Subtypes from primary virus cultures using the polymerase chain reaction. Virology 213, 80–86.CrossRefPubMedGoogle Scholar
  8. 8.
    Van Houten, B., Cheng, S., and Chen, Y. (2000) Measuring gene-specific nucleotide excision repair in human cells using quantitative amplification of long targets from nonogram quantities of DNA. Mutation Research 460, 81–94.CrossRefPubMedGoogle Scholar
  9. 9.
    Landre, P. A., Gelfand, D. H., and Watson, R. M. (1995) The use of cosolvents to enhance amplification by the polymerase chain reaction, in PCR Strategies (Innis, M. A., Gelfand, D. H., and Sninsky, J. J., eds.) Academic, San Diego, CA, pp.3–16.CrossRefGoogle Scholar
  10. 10.
    Skera, A. (1992) Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerase with proofreading activity. Nucl. Acids Res. 20, 3551–3554.CrossRefGoogle Scholar
  11. 11.
    de Noronha, C. and Mullins, J. (1992) PCR Meth. Appli. 2, 131–136.Google Scholar
  12. 12.
    Miller, S. A., Dykes, D. D., and Polesky, H. F. (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215.CrossRefPubMedGoogle Scholar
  13. 13.
    Sambrook, J., Fitsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 6.20, 6.21, 9.16-9.19, 9.34-9.57, and B.23-B.24.Google Scholar
  14. 14.
    Innis, M. A. and Gelfand, D. H. (1990) Optimization of PCRs, in PCR Protocols (Innis,M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., ed.s) Academic, San Diego, CA, pp.3–12.Google Scholar
  15. 15.
    Wu, D. Y., Ugozzoli, L., Pal, B. K., Qian, J., and Wallace, R. B. (1991) The effect of temperature and oligonucleotide primer length on the specificaity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol. 10, 233–238.CrossRefPubMedGoogle Scholar
  16. 16.
    Schmid, C. W. and Jelinek, W. R. (1982) The Alu family of dispersed repetitive sequences.Sciences 216, 1065–1070.CrossRefGoogle Scholar
  17. 17.
    Chou, Q., Russell, M., Birch, D. E., Raymond, J., and Block, W. (1992) Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications.Nucl. Acids Res. 20, 1717–1723.CrossRefPubMedGoogle Scholar
  18. 18.
    Monforte, J. A., Winegar, R. A., and Rudd, C. J. (1994) Megabase genomic DNA isolation procedure for use in transgenic mutagenesis assays. Environ. Mol. Mutagen. 23, 46.Google Scholar
  19. 19.
    Mullenbach, R., Lagoda, P. J. L., and Welter, C. (1989) Technical Tips: an efficient salt-chloroform extraction of DNA from blood and tissues. Trends in Gen. 5, 391.Google Scholar
  20. 20.
    Kolmodin, L., Cheng, S., and Akers, J. (1995) GeneAmp XL PCR Kit, in Amplifications:A Forum for PCR Users (The Perkin Elmer Corporation), Issue 13.Google Scholar
  21. 21.
    Cheng, S., Higuchi, R., and Stoneking, M. (1994) Complete mitochondrial genome amplification.Nature Gen. 7, 350, 351.CrossRefGoogle Scholar
  22. 22.
    Robin, E. D. and Wong, R. (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell Physiol. 136, 507–513.CrossRefPubMedGoogle Scholar
  23. 23.
    Jurecic, R., Nachtman, R. G., Colicos, S. M., and Belmont, J. W. (1998) Identification and Cloning of Differentially Expressed Genes by Long-Distance Differential Display. Anal.Biochem. 259, 235–244.CrossRefPubMedGoogle Scholar
  24. 24.
    Scharf, S. J., (1990) Cloning with PCR, in PCR Protocols (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds.) Academic, San Diego, CA, pp. 84–91.Google Scholar
  25. 25.
    Fromenty, B., Demeilliers, Mansouri, A., and Pessayre, D. (2000) Escherichia coli exonu-clease III enhances long PCR amplification of damaged DNA templates. Nucl. Acids Res. 28, 50.CrossRefGoogle Scholar
  26. 26.
    Carle, G. F., Frank, M., and Olson, M. V. (1989) Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science 232, 65–68.CrossRefGoogle Scholar
  27. 27.
    Hengen, P. N. (1997) Methods and reagents: optimizing multiplex and LA-PCR with betaine. TIBS 22, 225, 2226.PubMedGoogle Scholar
  28. 28.
    Clark, J. M. (1988) Novel nontemplated nucleotide addition reactions catalyzed by prokaryotic and eucaryotic DNA polymerases. Nucl. Acids Res. 16, 9677–9686.CrossRefPubMedGoogle Scholar
  29. 29.
    Hu, G. (1993) DNA Polymerase-catalyzed addition of nontemplated extra nucleotides to the 3′end of a DNA fragment. DNA Cell Biol. 12, 763–770.CrossRefPubMedGoogle Scholar
  30. 30.
    Stewart, A. C., Gravitt, P. E., Cheng, S., and Wheeler, C. M. (1995) Generation of entire human papilloma virus genomes by long PCR: frequency of errors produced during amplification. Genome Res. 5, 79–88.CrossRefPubMedGoogle Scholar
  31. 31.
    Costa, G. L. and Weiner, M. P. (1994) Protocols for cloning and analysis of blunt-ended PCR-generated DNA fragments. PCR Meth. Appl. 3, S95–S106.Google Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Lori A. Kolmodin
    • 1
  1. 1.Roche Molecular SystemsPleasanton

Personalised recommendations