Skip to main content

QTL Analysis in Plants

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 195))

Abstract

Quantitative traits are defined as traits that have a continuous phenotypic distribution (1,2). Variances of these traits are often controlled by the segregation of many loci, called quantitative trait loci (QTL). Therefore, quantitative traits are often synonymously called polygenic traits. Another characteristic of quantitative traits is that environmental variates can play a large role in determining the phenotypic variance. The polygenic nature and the ability of being modified by the environment make the study of genetic basis for quantitative traits more difficult than that for monogenic traits. Traditional methods of quantitative genetics that use only the phenotypic and pedigree information cannot separate the effects of individual loci but examine the collective effect of all QTL. With the rapid development of molecular technology, a large number of molecular markers (DNA variants) can be generated with ease. Most molecular markers are functionally neutral, but they normally obey the laws of Mendelian inheritance. Therefore, the relative positions of the markers along the genome (called the marker map) can be reconstructed using observed recombin ant events. The joint segregating patterns of markers, in conjunction with phenotypic and pedigree information, provides additional information about the genetic basis of quantitative traits, including the number and chromosomal locations of QTL, the mode of gene action, and sizes (effects) of individual QTL. A complete description of the properties of QTL is called the genetic architecture. The study of the genetic architecture of quantitative traits using molecular markers is called QTL mapping.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Falconer D. S. and Mackay T. F. C. (1996) Introduction to Quantitative Genetics. Longman Group London.

    Google Scholar 

  2. Lynch M. and Walsh B. (1998) Genetics and Analysis of Quantitative Traits. Sinauer Associates.

    Google Scholar 

  3. Rebai A. and Goffinet B. (1993) Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor. Appl. Genet. 86, 1014–1022.

    Article  Google Scholar 

  4. Haley C. S. and Knott S. A. (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315–324.

    PubMed  CAS  Google Scholar 

  5. Martinez O. and Curnow R. N. (1992) Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor. Appl Genet. 85, 480–488.

    Article  Google Scholar 

  6. Xu S. (1995) A comment on the simple regression method for interval mapping. Genetics 141, 1657–1659.

    PubMed  CAS  Google Scholar 

  7. Xu S. (1998) Further investigation on the regression method of mapping quantitative trait loci. Heredity 80, 364–373.

    Article  PubMed  Google Scholar 

  8. Xu S. (1998) Iteratively reweighted least squares mapping of quantitative trait loci. Behav. Genet. 28, 341–355.

    Article  PubMed  CAS  Google Scholar 

  9. Lander E. S. and Botstein D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.

    PubMed  CAS  Google Scholar 

  10. Jansen R. C. (1993) Interval mapping of multiple quantitative trait loci. Genetics 135, 205–211.

    PubMed  CAS  Google Scholar 

  11. Zeng Z.-B. (1994) Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.

    PubMed  CAS  Google Scholar 

  12. Hoeschele I. and Van Raden P. M. (1993) Bayesian analysis of linkage between genetic markers and quantitative trait loci. I. Prior knowledge. Theor. Appl. Genet. 85, 953–960.

    Google Scholar 

  13. Hoeschele I. and Van Raden P. M. (1993) Bayesian analysis of linkage between genetic markers and quantitative trait loci. II. Combining prior knowledge with experimental evidence. Theor. Appl. Genet. 85, 946–952.

    Google Scholar 

  14. Satagopan J. M., Yandell B. S., Newton M. A., and Osborn T. G. (1996) A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144, 805–816.

    PubMed  CAS  Google Scholar 

  15. Sillanpaa M. J. and Arjas E. (1988) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148, 1373–1388.

    Google Scholar 

  16. Sillanpaa M. J. and Arjas E. (1999) Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics 151, 1605–1619.

    PubMed  CAS  Google Scholar 

  17. Yi N. and Xu S. (2000) Bayesian mapping of quantitative trait loci under the IBD-based variance component model. Genetics 156, 411–422.

    PubMed  CAS  Google Scholar 

  18. Yi N. and Xu S. (2000) Bayesian mapping of quantitative trait loci for complex binary traits. Genetics 155, 1391–1403.

    PubMed  CAS  Google Scholar 

  19. Green P. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732.

    Article  Google Scholar 

  20. Richardson S.a.P.G. (1997) On Bayesian analysis of mixtures with an unknown number of components. J. R. Statist. Soc. Sec. B 59, 731–792.

    Article  Google Scholar 

  21. Steel R.G.D. and Torrie J. H. (1980) Principles and Procedures of Statistics: A Biometrical Approach. McGraw-Hill New York.

    Google Scholar 

  22. Xu S. and Atchley W. R. (1996) Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics 143, 1417–1424

    PubMed  CAS  Google Scholar 

  23. Yi N. and Xu S. (1999) Mapping quantitative trait loci for complex binary traits in outbred populations. Heredity 82, 668–676.

    Article  PubMed  Google Scholar 

  24. Yi N. and Xu S. (1999) A random model approach to mapping quantitative trait loci for complex binary traits in outbred populations. Genetics 153, 1029–1040.

    PubMed  CAS  Google Scholar 

  25. Kearsey M. J. (1993) in Plant Breeding: Principles and Prospects (Hayward M.D., Bosemark N.O. and Romagosa I, eds), Chapman & Hall New York, pp. 163–183.

    Google Scholar 

  26. Lander E. S. et al. (1987) MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

    Article  PubMed  CAS  Google Scholar 

  27. Stam P. (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J. 3, 739–744.

    Article  CAS  Google Scholar 

  28. Cockerham C. C. (1954) An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present Genetics 39, 859–882.

    PubMed  CAS  Google Scholar 

  29. Xu S. (1996) Computation for the full likelihood function for estimating variance at a quantitative trait locus. Genetics 144, 1951–1960.

    PubMed  CAS  Google Scholar 

  30. Haldane J.B.S. (1919) The combination of linkage values, and the calculation of distances between the loci of linked factors. J. Genet. 8, 299–309.

    Article  Google Scholar 

  31. Geman S. and Geman D. (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anafy. Mach. Intell 6, 721–741.

    Article  Google Scholar 

  32. Metropolis N. et al. (1953) Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091.

    Article  CAS  Google Scholar 

  33. Hastings W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109.

    Article  Google Scholar 

  34. Sobel E. and Lange K. (1996) Descent graphs in pedigree analysis: Applications to haplotyping, location scores, and marker-sharing statistics. Am. J. Hum Genet. 58, 1323–1337.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Xu, S. (2002). QTL Analysis in Plants. In: Camp, N.J., Cox, A. (eds) Quantitative Trait Loci. Methods in Molecular Biology™, vol 195. Humana Press. https://doi.org/10.1385/1-59259-176-0:283

Download citation

  • DOI: https://doi.org/10.1385/1-59259-176-0:283

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-927-8

  • Online ISBN: 978-1-59259-176-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics