Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 199))

  • 1329 Accesses

Abstract

Enveloped animal viruses infect host cells by fusion of viral and target membranes. This crucial fusion event occurs either with the plasma membrane of the host cells or with the endosomal membranes (1). Fusion is triggered by specific glycoproteins in the virus membrane (2) and involves a range of steps before the final merging of membranes occurs. These steps include molecular processes, such as envelope protein conformational changes; aggregation of envelope protein; lipid-envelope protein interactions; and fusion pore formation and pore widening (see Fig. 1) (3,4). The reader is referred to a number of reviews on viral glycoprotein-mediated membrane fusion (59).

A cartoon depicting various fusion intermediates following structural changes in viral proteins. This cartoon taken from Blumenthal et al. (3) shows fusion intermediates after virus binds to the target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White J., Matlin K., and Helenius A. (1981) Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J. Cell Biol. 89, 674–679.

    Article  PubMed  CAS  Google Scholar 

  2. White J. M. (1992) Membrane fusion. Science 258, 917–924.

    Article  PubMed  CAS  Google Scholar 

  3. Blumenthal R., Schoch C., Puri A., and Clague M. J. (1991) A dissection of steps leading to viral envelope protein-mediated membrane fusion. Ann. NY Acad. Sci. 635, 285–296.

    Article  PubMed  CAS  Google Scholar 

  4. Blumenthal R., Pak C. C., Krumbiegel M., Lowy R. J., Puri A., Elson H. F., and Dimitrov D. S. (1994) How viral envelope glycoproteins negotiate the entry of genetic material into the cell, in Biotechnology Today (Verna R. and Shamoo A., eds.), Ares-Serono Symposia Publications, Rome, pp. 151–173.

    Google Scholar 

  5. Blumenthal R., Puri A., Sarkar D. P., Chen Y., Eidelman O., and Morris S. J. (1989) Membrane fusion mediated by viral spike glycoproteins, in Cell Biology of Virus Entry, Replication and Pathogenesis (Helenius A., Compans R., and Oldstone M., eds.), Alan R. Liss, New York, pp. 197–217.

    Google Scholar 

  6. Chan D. C. and Kim P. S. (1998) HIV entry and its inhibition. Cell 93, 681–684.

    Article  PubMed  CAS  Google Scholar 

  7. Dimitrov D. S. (1997) How do viruses enter cells? The HIV coreceptors teach us a lesson of complexity. Cell 91, 721–730.

    Article  PubMed  CAS  Google Scholar 

  8. Hughson F. M. (1997) Enveloped viruses: a common mode of membrane fusion? Curr. Biol. 7, R565–R569.

    Article  PubMed  CAS  Google Scholar 

  9. White J. M. (1995) Membrane fusion: the influenza paradigm. Cold Spring Harbor Symp. Quant. Biol. 60, 581–588.

    PubMed  CAS  Google Scholar 

  10. Melikyan G. B. and Chernomordik L. V. (1997) Membrane rearrangements in fusion mediated by viral proteins. Trends Microbiol. 5, 349–355.

    Article  PubMed  CAS  Google Scholar 

  11. Herrmann A., Clague M. J., Puri A., Morris S. J., Blumenthal R., and Grimaldi S. (1990) Effect of erythrocyte transbilayer phospholipid distribution on fusion with vesicular stomatitis virus. Biochemistry 29, 4054–4058.

    Article  PubMed  CAS  Google Scholar 

  12. Kielian M. C. and Helenius A. (1984) Role of cholesterol in fusion of Semliki Forest virus with membranes. J. Virol. 52, 281–283.

    PubMed  CAS  Google Scholar 

  13. Nieva J. L., Bron R., Corver J., and Wilschut J. (1994) Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J. 13, 2797–2804.

    PubMed  CAS  Google Scholar 

  14. Wilschut J., Corver J., Nieva J. L., Bron R., Moesby L., Reddy K. C., and Bittman R. (1995) Fusion of Semliki Forest virus with cholesterol-containing liposomes at low pH: a specific requirement for sphingolipids. Mol. Membr. Biol. 12, 143–149.

    Article  PubMed  CAS  Google Scholar 

  15. Rogers G. N., Paulson J. C., Daniels R. S., Skehel J. J., Wilson I. A., and Wiley D. C. (1983) Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304, 76–78.

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki Y., Suzuki T., Matsunaga M., and Matsumoto M. (1985) Gangliosides as paramyxovirus receptor. Structural requirement of sialo-oligosaccharides in receptors for hemagglutinating virus of Japan (Sendai virus) and Newcastle disease virus. J. Biochem. (Tokyo) 97, 1189–1199.

    CAS  Google Scholar 

  17. Puri A., Hug P., Munoz-Barroso I., and Blumenthal R. (1998) Human erythrocyte glycolipids promote HIV-1 envelope glycoprotein-mediated fusion of CD4+ cells. Biochem. Biophys. Res. Commun. 242, 219–225.

    Article  PubMed  CAS  Google Scholar 

  18. Puri A., Hug P., Jernigan K., Barchi J., Kim H. Y., Hamilton J., et al. (1998) The neutral glycosphingolipid globotriaosylceramide promotes fusion mediated by a CD4-dependent CXCR4-utilizing HIV type 1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA 95, 14435–14440.

    Article  PubMed  CAS  Google Scholar 

  19. Hammache D., Yahi N., Maresca M., Pieroni G., and Fantini J. (1999) Human erythrocyte glycosphingolipids as alternative cofactors for human immunodeficiency virus type 1 (HIV-1) entry: evidence for CD4-induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3). J. Virol. 73, 5244–5248.

    PubMed  CAS  Google Scholar 

  20. Puri A., Hug P., Jernigan K., Rose P., and Blumenthal R. (1999) Role of glycosphingolipids in HIV-1 entry: requirement of globotriaosylceramide (Gb3) in CD4/CXCR4-dependent fusion. Biosci. Rep. 19, 317–325.

    Article  PubMed  CAS  Google Scholar 

  21. Chernomordik L., Kozlov M. M., and Zimmerberg J. (1995) Lipids in biological membrane fusion. J. Membr. Biol. 146, 1–14.

    PubMed  CAS  Google Scholar 

  22. Gunther-Ausborn S., Praetor A., and Stegmann T. (1995) Inhibition of influenzainduced membrane fusion by lysophosphatidylcholine. J. Biol. Chem. 270, 29279–29285.

    Article  PubMed  CAS  Google Scholar 

  23. Loyter A., Citovsky V., and Blumenthal R. (1988) The use of fluorescence dequenching measurements to follow viral membrane fusion events. Methods Biochem. Anal. 33, 129–164.

    Article  PubMed  CAS  Google Scholar 

  24. Sarkar D. P. and Blumenthal R. (1987) The role of the target membrane structure in fusion with Sendai virus. Membr. Biochem. 7, 231–247.

    Article  PubMed  Google Scholar 

  25. Scheiffele P., Rietveld A., Wilk T., and Simons K. (1999) Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274, 2038–2044.

    Article  PubMed  CAS  Google Scholar 

  26. Jacobs N. L., Andemariam B., Underwood K. W., Panchalingam K., Sternberg D., Kielian M., and Liscum L. (1997) Analysis of a Chinese hamster ovary cell mutant with defective mobilization of cholesterol from the plasma membrane to the endoplasmic reticulum. J. Lipid Res. 38, 1973–1987.

    PubMed  CAS  Google Scholar 

  27. Clapham P. R., Blanc D., and Weiss R. A. (1991) Specific cell surface requirements for the infection of CD4-positive cells by human immunodeficiency virus types 1 and 2 and by Simian immunodeficiency virus. Virology 181, 703–715.

    Article  PubMed  CAS  Google Scholar 

  28. Jonak Z. L., Clark R. K., Matour D., Trulli S., Craig R., Henri E., et al. (1993) A human lymphoid recombinant cell line with functional human immunodeficiency virus type 1 envelope. AIDS Res. Hum. Retrovir. 9, 23–32.

    Article  PubMed  CAS  Google Scholar 

  29. Thomas D., Newcomb W. W., Brown J. C., Wall J. S., Hainfeld J. F., Trus B. L., and Steven A. C. (1985) Mass and molecular composition of vesicular stomatitis virus: a scanning transmission electron microscopy analysis. J. Virol. 54, 598–607.

    PubMed  CAS  Google Scholar 

  30. Pak C. C., Krumbiegel M., and Blumenthal R. (1994) Intermediates in influenza PR/8 hemagglutinin-induced membrane fusion. J. Gen. Virol. 75, 395–399.

    Article  PubMed  CAS  Google Scholar 

  31. Paternostre M., Viard M., Meyer O., Ghanan M., Ollivon M., and Blumenthal R. (1997) Solubilization and reconstitution of vesicular stomatitis virus envelope using octylglucoside. Biophys. J. 72, 1683–1694.

    Article  PubMed  CAS  Google Scholar 

  32. Paternostre M. T., Lowy R. J., and Blumenthal R. (1989) pH-dependent fusion of reconstituted vesicular stomatitis virus envelopes with Vero cells. Measurement by dequenching of fluorescence. FEBS Lett. 243, 251–258.

    Article  PubMed  CAS  Google Scholar 

  33. daGraca M., Eidelman O., Ollivon M., and Walter A. (1989) Temperature dependence of the vesicle-micelle transition of egg phosphatidylcholine and octyl glucoside. Biochemistry 28, 8921–8928.

    Article  Google Scholar 

  34. Meyer O., Ollivon M., and Paternostre M. T. (1992) Solubilization steps of dark-adapted purple membrane by Triton X-100. A spectroscopic study. FEBS Lett. 305, 249–253.

    Article  PubMed  CAS  Google Scholar 

  35. Allan D. and Crumpton M. J. (1970) Preparation and characterization of the plasma membrane of pig lymphocytes. Biochem. J. 120, 133–143.

    PubMed  CAS  Google Scholar 

  36. Levy D., Bluzat A., Seigneuret M., and Rigaud J. L. (1990) A systematic study of liposome and proteoliposome reconstitution involving Bio-Bead-mediated Triton X-100 removal. Biochim. Biophys. Acta 1025, 179–190.

    Article  PubMed  CAS  Google Scholar 

  37. Hug P., Lin H. M., Korte T., Xiao X., Dimitrov D. S., Wang J. M., et al. (2000) Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J. Virol. 74, 6377–6385.

    Article  PubMed  CAS  Google Scholar 

  38. Klenk H. D., Rott R., Orlich M., and Blodorn J. (1975) Activation of influenza A viruses by trypsin treatment. Virology 68, 426–439.

    Article  PubMed  CAS  Google Scholar 

  39. Puri A., Krumbiegel M., Dimitrov D., and Blumenthal R. (1993) A new approach to measure fusion activity of cloned viral envelope proteins: fluorescence dequenching of octadecylrhodamine-labeled plasma membrane vesicles fusing with cells expressing vesicular stomatitis virus glycoprotein. Virology 195, 855–858.

    Article  PubMed  CAS  Google Scholar 

  40. Clague M. J., Schoch C., Zech L., and Blumenthal R. (1990) Gating kinetics of pH-activated membrane fusion of vesicular stomatitis virus with cells: stopped flow measurements by dequenching of octadecylrhodamine fluorescence. Biochemistry 29, 1303–1308.

    Article  PubMed  CAS  Google Scholar 

  41. Kaplan D., Zimmerberg J., Puri A., Sarkar D. P., and Blumenthal R. (1991) Single cell fusion events induced by influenza hemagglutinin: studies with rapid-flow, quantitative fluorescence microscopy. Exp. Cell Res. 195, 137–144.

    Article  PubMed  CAS  Google Scholar 

  42. Morris S. J., Sarkar D. P., White J. M., and Blumenthal R. (1989) Kinetics of pH-dependent fusion between 3T3 fibroblasts expressing influenza hemagglutinin and red blood cells. Measurement by dequenching of fluorescence. J. Biol. Chem. 264, 3972–3978.

    PubMed  CAS  Google Scholar 

  43. Puri A., Dimitrov D. S., Golding H., and Blumenthal R. (1992) Interactions of CD4+ plasma membrane vesicles with HIV-1 and HIV-1 envelope glycoproteinexpressing cells. J. AIDS 5, 915–920.

    CAS  Google Scholar 

  44. Jacewicz M. S., Mobassaleh M., Gross S. K., Balasubramanian K. A., Daniel P. F., Raghavan S., et al. (1994) Pathogenesis of Shigella diarrhea: XVII. A mammalian cell membrane glycolipid, Gb3, is required but not sufficient to confer sensitivity to Shiga toxin. J. Infect. Dis. 169, 538–546.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Puri, A., Paternostre, M., Blumenthal, R. (2002). Lipids in Viral Fusion. In: Basu, S.C., Basu, M. (eds) Liposome Methods and Protocols. Methods in Molecular Biology, vol 199. Humana Press. https://doi.org/10.1385/1-59259-175-2:61

Download citation

  • DOI: https://doi.org/10.1385/1-59259-175-2:61

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-845-5

  • Online ISBN: 978-1-59259-175-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics