Skip to main content

Liposomes and Phospholipid Binding Proteins in Glycoprotein Biosynthesis

  • Protocol
Liposome Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 199))

  • 1325 Accesses

Abstract

The metabolic process of glycosylation of proteins on the amide nitrogen of specific asparagine residues in proteins, referred to as N-linked glycosylation, has common features found in all eucaryotic cells. The distinguishing general features are (1) the preassembly in the endoplasmic reticulum (ER) of the precursor core oligosaccharide on a lipid carrier, dolichol phosphate (dol-P); (2) the transfer of the oligosaccharide from dolichol pyrophosphate to the specific asparagine residue of the protein as a cotranslational event; and (3) the modification of the protein-linked oligosaccharide by removal and addition of sugar residues (processing) as the glycoprotein proceeds through the ER and Golgi complex (see ref. 1 for a comprehensive review of glycoprotein biosynthesis). Preassembly in the ER of the precursor oligosaccharide on dol-P involves the addition of two GlcNAc residues (one of these as GlcNAc-1-P), nine mannose residues, and, in most cases, three glucose residues to generate the dol-P-P-GlcNAc2Man9Glc3 molecule. Fourteen glycosyltransfer steps are involved, presumably catalyzed by 14 specific transferases. Addition of the two GlcNAc residues and five of the mannose residues occurs on the cytosolic side of the ER membrane with sugar nucleotide precursors, whereas the remaining four mannose residues and the three glucose residues are added in the lumen of the ER with dol-P-linked sugar precursors. The numerous enzymes catalyzing glycosyl transfer reactions are thus functionally and topologically located either on the cytosolic side or on the luminal side of the ER membrane; and other proteins involved, such as a translocase or flippase for moving the dol-P-P-linked GlcNAc2Man5 from the cytosolic side to the lumen of the ER, have topological features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montreuil J., Vliegenthart J. F. G., and Schachter H., eds. (1995) Glycoproteins. Elsevier New York.

    Google Scholar 

  2. Wirtz K. W. A. (1991) Phospholipid transfer proteins. Annu. Rev. Biochem. 60, 73–99.

    Article  PubMed  CAS  Google Scholar 

  3. Dyatlovitskays E. V., Lemenovskaya A. F., and Bergelson L. C. (1979) Use of protein-mediated lipid exhange in the study of membrane-bound enzymes. The lipid dependence of glucose-6-phosphatase. Eur. J. Biochem. 99, 605–612.

    Article  Google Scholar 

  4. Crain R. C. and Zilversmit D. B. (1981) Lipid dependence of glucose-6-phosphate phosphohydrolase: a study with purified phospholipid transfer proteins and phosphatidylinositol-specific phospholipase C. Biochemistry 20, 5320–5326.

    Article  PubMed  CAS  Google Scholar 

  5. North P. and Fleischer S. (1983) Alteration of synaptic membrane cholesterol/ phospholipid ratio using a lipid transfer protein. Effect on Γ-aminobutyric acid uptake. J. Biol. Chem. 258, 1242–1253.

    PubMed  CAS  Google Scholar 

  6. McOsker C. C., Weiland G. A., and Zilversmit D. B. (1983) Inhibition of hormone-stimulated adenylate cyclase activity after altering turkey erythrocyte phospholipid composition with a nonspecific lipid transfer protein. Phosphatidylinositol uncouples catecholamine binding from adenylate cyclase activation. J. Biol. Chem. 258, 13017–13026.

    PubMed  CAS  Google Scholar 

  7. Lunardi J., DeFoor P., and Fleischer S. (1988) Modification of phospholipid environment in sarcoplasmic reticulum using nonspecific phospolipid transfer protein. Methods Enzymol. 157, 369–377.

    Article  PubMed  CAS  Google Scholar 

  8. Gumbhir K., Sanyal S. N., Minocha R., Wali A., and Majumdar S., (1989) Glucose-6-phosphate phosphohydrolase activity in guinea pig liver microsomes is influenced by phosphatidylcholine. Interaction with cholesterol-enriched membranes. Biochim. Biophys. Acta 981, 77–84.

    Article  PubMed  CAS  Google Scholar 

  9. Kadowaki H., Grant M. A., and Seyfried T. N. (1994) Effect of Golgi membrane phospholipid composition on the molecular species of GM3 gangliosides synthesized by rat liver sialytransferase. J. Lipid. Res. 35, 1956–1964.

    PubMed  CAS  Google Scholar 

  10. Bayon Y., Croset M., Guerbette F., Daveloose D., Chirouze V., Viret J., et al. (1995) Selective modifications of the phospholipid fatty acid composition in human platelet membranes using nonspecific and specific lipid transfer proteins. Analyt. Biochem. 230, 75–84.

    Article  PubMed  CAS  Google Scholar 

  11. Lehrman M. A. (1991) Biosynthesis of N-acetylglucosamine-P-P-dolichol, the step of asparagine-linked oligosaccharide assembly. Glycobiology 1, 553–562.

    Article  PubMed  CAS  Google Scholar 

  12. Plouhar P. L. and Bretthauer R. K. (1982) A phospholipid requirement for dolichol pyrophosphate N-acetylglucosamine synthesis in phospholipase A2-treated rat lung microsomes. J. Biol. Chem. 257, 8907–8911.

    PubMed  CAS  Google Scholar 

  13. Plouhar P. L., and Bretthauer R. K. (1983) Restoration by phospholipids of pyrophosphate N-acetylglucosamine synthesis in delipidated rat lung microsomes. J. Biol. Chem. 258, 12988–12993.

    PubMed  CAS  Google Scholar 

  14. Chandra N. C., Doody M. B., and Bretthauer R. K. (1991) Specific lipids enhance the activity of UDP-GlcNAc:dolichol phosphate GlcNAc-1-phosphate transferase in rat liver endoplasmic reticulum membrane vesicles. Arch. Biochem. Biophys. 290, 345–354.

    Article  PubMed  CAS  Google Scholar 

  15. Matsuura E. J., George H. J., Ramachandran N., Alverez J. G., Strauss J. F. III, and Billheimer J. T. (1993) Expression of the mature and pro-form of human sterol carrier protein 2 in Escherichia coli alters bacterial lipids. Biochemistry 32, 567–572.

    Article  PubMed  CAS  Google Scholar 

  16. Smith A. L. (1967) Preparation, properties, and conditions for assay of mitochondria: slaughterhouse material, small-scale. Methods Enzymol. 10, 81–86.

    Article  CAS  Google Scholar 

  17. Zilversmit D. B. and Johnson L. W. (1975) Purification of phospholipid exchange proteins from beef heart. Methods Enzymol. 35, 262–269.

    Article  PubMed  CAS  Google Scholar 

  18. Carey S., and Hirschberg C. B. (1980) Kinetics of glycosylation and intracellular transport of sialoglycoproteins in mouse liver. J. Biol. Chem. 255, 4348–4354.

    PubMed  CAS  Google Scholar 

  19. Burchell A. (1990) The molecular pathology of glucose-6-phosphatase. FASEB J. 4, 2978–2988.

    PubMed  CAS  Google Scholar 

  20. Trevelyan W. E., Procter D. P., and Harrison J. S. (1950) Detection of sugars on paper chromatography. Nature 166, 444–448.

    Article  PubMed  CAS  Google Scholar 

  21. Bligh E. G., and Dyer W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  22. Ames B. N. (1966) Assay of inorganic phosphate, total phosphate, and phosphatases. Methods Enzymol. 8, 115–118.

    Article  CAS  Google Scholar 

  23. Poorthuis B. J. H. M., Yazki P. J., and Hostetler K. Y. (1976) An improved two dimensional thin-layer chromatography system for the separation of phosphatidylglycerol and its derivatives. J. Lipid Res. 17, 433–437.

    PubMed  CAS  Google Scholar 

  24. Gilfillan A. M., Chu A. J., Smart D. A., and Rooney S. A. (1983) Single plate separation of lung phospholipids including disaturated phosphatidylcholine. J. Lipid Res. 24, 1651–1656.

    PubMed  CAS  Google Scholar 

  25. Lipsky S. R. and Landowne R. A. (1963) The identification of fatty acids by gas chromatography. Methods Enzymol. 6, 513–537.

    Article  CAS  Google Scholar 

  26. Allain C. A., Poon L. S., Chan C. S. G., Richmond W., and Fu P. C. (1974) Enzymatic determination of total serum cholesterol. Clin. Chem. 20, 470–476.

    PubMed  CAS  Google Scholar 

  27. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  28. Schutzbach J. S. (1997) The role of the lipid matrix in the biosynthesis of dolichyl-linked oligosaccharides. Glycoconjugate J. 2, 175–182.

    Article  Google Scholar 

  29. Chojnacki T., and Dallner G. (1988) The biological role of dolichol. Biochem J. 251, 1–9.

    PubMed  CAS  Google Scholar 

  30. Cullis P. R., Hope M. J., and Tilcock C. P. S. (1986) Lipid polymorphism and roles of lipids in membranes. Chem. Phys. Lipids 40, 127–144.

    Article  PubMed  CAS  Google Scholar 

  31. Dowhan W. (1997) Molecular basis for membrane phospholipid diversity: Why are there so many lipids? Annu. Rev. Biochem. 66, 199–232.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Bretthauer, R.K., Welsh, D.W. (2002). Liposomes and Phospholipid Binding Proteins in Glycoprotein Biosynthesis. In: Basu, S.C., Basu, M. (eds) Liposome Methods and Protocols. Methods in Molecular Biology, vol 199. Humana Press. https://doi.org/10.1385/1-59259-175-2:131

Download citation

  • DOI: https://doi.org/10.1385/1-59259-175-2:131

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-845-5

  • Online ISBN: 978-1-59259-175-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics