Skip to main content

Micelles and Liposomes in Metabolic Enzyme and Glycolipid Glycosyltransferase Assays

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 199))

Abstract

The use of liposomes has long been in practice for various biochemical purposes including liposome-enzyme targeting into different organelles (15). Different aspects of liposome uses are discussed in this book. This chapter is a general review on the use of liposomes in the enzyme assay with emphasis on glycolipid:glycosyltransferases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sood C. K., Sweet C., and Zull J. E. (1972) Interaction of kidney (Na+, K+) ATPase with phospholipid model membrane systems. Biochim. Biophys. Acta 282, 429–434.

    Article  PubMed  CAS  Google Scholar 

  2. Gregoriadis G. and Ryman B. E. (1972) Lysozomal localization of fructufuranosidase containing liposomes injected into rats. Biochem. J. 129, 123–133.

    PubMed  CAS  Google Scholar 

  3. de Barsy T., Devos P., and Van Hoof F. (1975) The cellular distribution of liposomes in the liver of newborn rats. Biochem. Soc. Trans. 3, 159–160.

    PubMed  Google Scholar 

  4. Hexter C. S. and Goldman R. (1973) Interaction of D-hydroxubutyrate dehydrogenase with lecithin vesicles. Biochim. Biophys. Acta 307, 421–427.

    Article  PubMed  CAS  Google Scholar 

  5. Toffano G., Leon A., Savoini G., and Orlando P. (1977) Effect of phospholipid liposomes on the regulation of cerebral metabolism. Adv. Exp. Med. Biol. 83, 407–418.

    PubMed  CAS  Google Scholar 

  6. Kaduce T. L., Schimdt R. W., and Spector A. A. (1978) Acylcoenzyme A cholesterol acyltransferase activity: solubilization and reconstitution in liposomes. Biochem. Biophys. Res. Commun. 81, 462–468.

    Article  PubMed  CAS  Google Scholar 

  7. Barzilay M., de Vries A., and Condrea E. (1978) Exposure of human red cell membrane phospholipids to snake venom phospholipase A1: hydrolysis of substrate by Vipera palaestinae phospholipase from within released red cells. Toxicon 16, 145–152.

    Article  PubMed  CAS  Google Scholar 

  8. Carroll R. C. and Racker E. (1977) Preparation and characterization of cytochrome c oxidase vesicles with high respiratory control. J. Biol. Chem. 252, 6981-6890.

    Google Scholar 

  9. Hung S. C. and Melnykovych G. (1977) Increase in activity of partially purified alkaline phosphatase after treatment with Mg2+, Zn2+ and lysolecithin. Enzyme 22, 28–34.

    PubMed  CAS  Google Scholar 

  10. Hall E. R. and Brodbeck U. (1978) Human erythrocyte membrane acetylcholinesterase. Incorporation into the lipid bilayer structure of liposomes. Eur. J. Biochem. 89, 159–167.

    Article  PubMed  CAS  Google Scholar 

  11. Finkelstein M. C. and Weissmann G. (1979) Enzyme replacement via liposomes. Variation in lipid compositions determine liposomal integrity in biological fluids. Biochim. Biophys. Acta, 587, 202–216.

    PubMed  CAS  Google Scholar 

  12. Pal R., Barenholz Y., and Wagner R. R. (1980) Effect of cholesterol concentration on organization of viral and vesicle membranes. Probed by accessibility to cholesterol oxidase. J. Biol. Chem. 255, 5802–5806.

    PubMed  CAS  Google Scholar 

  13. Frenkel E. J., Roelofsen B., Brodbeck U., vanDeeneen L. L., and Ott P. (1980) Lipid:protein interaction in human erythrocyte-membrane acetylcholinesterase. Modulation of enzyme activity by lipids. Eur. J. Biochem. 109, 377–382.

    Article  PubMed  CAS  Google Scholar 

  14. Galzina L., Bertazzon A., Garbin L., and Deana R. (1981) Change of catalytic properties of erythrocyte acetylcholinesterase after binding to lecithin liposomes. Enzyme 26, 8–14.

    Google Scholar 

  15. Hebdon G. M., Levine H. 3d., Sahyam N. E., Schmitger C. J., and Cuatrecasas P. (1981) Specific phospholipids are required to reconstitute adenylate cyclase solubilized from rat brain. Proc. Natl. Acad. Sci. USA 78, 120–123.

    Article  PubMed  CAS  Google Scholar 

  16. Doolittle G. M. and Chang T. Y. (1982) Solubilization, partial purification and reconstitution in phosphatidylcholine-cholesterol of acylcoenzyme A:cholesterol acyltransferase. Biochemistry 21, 674–679.

    Article  PubMed  CAS  Google Scholar 

  17. Suckling K. E., Boyd G. S., and Smellie C. G. (1982) Properties of a solubilized and reconstituted preparation of acylcoenzyme A:cholesterol acyltransferase from rat liver. Biochim. Biophys. Acta 710, 154–163.

    PubMed  CAS  Google Scholar 

  18. Mathur S. N. and Spector A. A. (1982) Effect of liposome composition on the activity of detergent solubilized acylcoenzyme A:cholesterol acyltransferase. J. Lipid Res. 23, 692–701.

    PubMed  CAS  Google Scholar 

  19. Doolittle G. M. and Chang T. Y. (1982) Acylcoenzyme A:cholesterol acyltransferase in chinese hamster ovary cells. Enzyme activity determination after reconstitution in phospholipid/cholesterol liposomes. Biochim. Biophys. Acta 713, 529–537.

    PubMed  CAS  Google Scholar 

  20. Jahani M. and Lacko A. G. (1982) Study of lecithin:cholesterol acyltransferase reaction with liposome and high density lipoprotein. Biochim. Biophys. Acta 713, 504–511.

    PubMed  CAS  Google Scholar 

  21. Forgac M. and Berne M. (1986) Structural characterization of ATP-hydrolyzing portion of the coated vesicle pump. Biochemistry 25, 4275–4280.

    Article  PubMed  CAS  Google Scholar 

  22. Gould G. W., McWhirter J. M., East J. M., and Lee A. G. (1987) Uptake of Ca2+ mediated by the (Ca2+Mg2+)-ATPase in reconstituted vesicles. Biochim. Biophys. Acta 904, 36–44.

    Article  PubMed  CAS  Google Scholar 

  23. Holcomb C. L., Hansen W. J., Etcheverry T., and Schekman R. (1988) Secretory vesicles externalize the major plasma membranes ATPase in yeast. J. Cell Biol. 106, 641–648.

    Article  PubMed  CAS  Google Scholar 

  24. Wach A., Ahlers J., and Graber P. (1990) The (H+)-ATPase of the plasma membrane from yeast. ATP hydrolysis in native, isolated and reconstituted membranes. Eur. J. Biochem. 189, 675–682.

    Article  PubMed  CAS  Google Scholar 

  25. Kragh-Hansen U., Ie Marie M., and Moller J. V. (1998) The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys. J. 75, 2932–2946.

    Article  PubMed  CAS  Google Scholar 

  26. Ohshima A., Narita H., and Kito M. (1983) Phospholipid reverse micelles as a milieu of an enzyme reaction in apolar system. J. Biochem. (Tokyo) 93, 1421–1425.

    CAS  Google Scholar 

  27. Nametkin S. N., Kabanov A. V., and Levashov A. V. (1993) Alkaline phosphatase from calf intestinal mucosa in reversed micelle system: modulation of enzyme by pH variation. Biochem. Mol. Biol. Int. 1, 103–111.

    Google Scholar 

  28. Seetharam B., Tiruppathi C., and Alpers D. H. (1985) Membrane interactions of rat intestinal alkaline phosphatase: role of polar head groups. Biochemistry 24, 6603–6608.

    Article  PubMed  CAS  Google Scholar 

  29. Seetharam B., Tiruppathi C., and Alpers D. H. (1987) Hydrophobic interactions of brush border alkaline phosphatases: role of phophatidyl inositol. Arch. Biochem. Biophys. 253, 189–198.

    Article  PubMed  CAS  Google Scholar 

  30. Brasitus T. A., Dahiya R., Dudeja P. K., and Bissonnette B. M. (1988) Cholesterol modulates alkaline phosphatase activity of rat intestinal microvillus membranes. J. Biol. Chem. 263, 8592–8597.

    PubMed  CAS  Google Scholar 

  31. Dennis E. A., Darke P. L., Deems R. A., Kensil C. R., and Pluckthun A. (1981) Cobra venom phospholipase A2. Mol. Cell Biochem. 36, 37–45.

    Article  PubMed  CAS  Google Scholar 

  32. Kupferberg J. P., Yokoyama S., and Kezdy F. J. (1981) The kinetics of PLA2-catalyzed hydrolysis of egg lecithin in unilamellar vesicles. J. Biol. Chem. 256, 6274–6281.

    PubMed  CAS  Google Scholar 

  33. Scherphof G., Van Leeuwen B., Wilschut J., and Damen J. (1983) Exchange of PC between small unilamellar liposomes and human plasma HDL involves exclusively the PL in the outer monolayer of the liposomal membrane. Biochim. Biophys. Acta 732, 595–599.

    Article  PubMed  CAS  Google Scholar 

  34. Sevanian A., Wratten M. L., McLeod L. L., and Kim E. (1988) Lipid peroxidation and PLA2 activity in liposomes composed of unsaturated phospholipids. Biochim. Biophys. Acta. 961, 316–327.

    PubMed  CAS  Google Scholar 

  35. Bell J. D. and Biltonen R. L. (1989) The temporal sequence of events in the activation of PLA2 by lipid vesicles. J. Biol. Chem. 264, 12194–12200.

    PubMed  CAS  Google Scholar 

  36. Salgo M. G., Corongiu F. P., and Sevanian A. (1992) Peroxidation and PLA2 susceptibility of liposomes containing mixed micelles of PC and PE. Biochim. Biophys. Acta 1127, 131–140.

    PubMed  CAS  Google Scholar 

  37. Salgo M. G., Corongiu F. P., and Sevanian A. (1993) Enhanced interfacial catalysis and hydrolysis and specificity of PLA2 toward peroxidized PC vesicles. Arch. Biochem. Biophys. 304, 123–132.

    Article  PubMed  CAS  Google Scholar 

  38. Nieva J. L., Goni F. M., and Alonso A. (1989) Liposome fusion catalytically induced by phospholipase C. Biochemistry 28, 7364–7367.

    Article  PubMed  CAS  Google Scholar 

  39. Basanez G., Fidelio G. D., Goni F. M., Maggio B., and Alonso A. (1996) Dual inhibitory effect of gangliosides on phospholipase C-promoted fusion of lipidic vesicles. Biochemistry 35, 7506–7513.

    Article  PubMed  CAS  Google Scholar 

  40. Volwerk J. J., Filthuth E., Griffith O. H., and Jain M. K. (1994) PI-specifiPLC from B. cereus at the lipid-water interface:interfacial binding, catalysis and activation. Biochemistry 33, 3464–3474.

    Article  PubMed  CAS  Google Scholar 

  41. Lomansney J. W., Cheng H. F., Roffler S. R., and King K. (1999) Activation of PLC delta1 through C2 domain by Ca2+-enzyme-PS ternary complex. J. Biol. Chem. 274, 21995–22001.

    Article  Google Scholar 

  42. Pawelczyk T. and Lowenstein J. M. (1992) Regulation of PLC delta activity by SM and sphingosine. Arch. Biochem. Biophys. 297, 328–333.

    Article  PubMed  CAS  Google Scholar 

  43. Kinkaid A. R., Othman R., Voysey J., and Wilton D. C. (1998) PLD and PA enhance hydrolysis of phospholipids in vesicles and small membranes by human secreted PLA2. Biochim. Biophys. Acta 1390, 173–185.

    PubMed  CAS  Google Scholar 

  44. Gatt S. and Rapport M. (1966) Enzymatic hydrolysis of sphingolipids. Biochem. J. 101, 680–686.

    PubMed  CAS  Google Scholar 

  45. Gatt S., Dinur T., and Dagan A. (2002) Liposome-mediated, fluorescence-based studies of sphingolipid metabolism in intact cells, in Liposome Methods and Protocols, (Basu S. and Basu M, eds.), Humana, Totowa, NJ, Chap. 6, pp. 85–105.

    Google Scholar 

  46. Gatt S., Barenholz Y., Goldberg R., Dinur T., Besley G., Leibovitz-Ben Gershon Z., et al. (1981) Assay of enzymes of lipid metabolism with colored and flourescent derivatives of natural lipids. Methods Enzymol. 72, 351–375.

    Article  PubMed  CAS  Google Scholar 

  47. Lee-Vaupel M. and Conzelmann E. (1987) Assay of sulfatide sulfatase in cultured skin fibroblasts with the natural activator protein. Clin. Chim. Acta 168, 55–68.

    Article  PubMed  CAS  Google Scholar 

  48. Nalecz M. J., Zborowski J., Famulski K. S., and Wojtczak L. (1980) Effect of PL composition on surface potential of liposomes and the activity of enzymes incorporated. Eur. J. Biochem. 112, 75–80.

    Article  PubMed  CAS  Google Scholar 

  49. Cohen R. and Barenholz Y. (1978) Correlation between thermotropic behavior of SM liposomes and SM hydrolysis by SMase of S. aureus. Biochim. Biophys. Acta 509, 181–187.

    Article  PubMed  CAS  Google Scholar 

  50. Tomita M., Sawada H., Taguchi R., and Ikezawa H. (1987) The action of SMase from B. cereus on ATP-depleted bovine erythrocyte membranes and different lipid compositions of liposomes. Arch. Biochem. Biophys. 255, 127–135.

    Article  PubMed  CAS  Google Scholar 

  51. Ruiz-Arguello M. B., Goni F. M., and Alonso A. (1998) Vesicle membrane fusion induced by concerted activities of SMase and PLC. J. Biol. Chem. 273, 22977–22982.

    Article  PubMed  CAS  Google Scholar 

  52. Holopainen J. M., Subramanian M., and Kinnunen P. K. J. (1998) SMase induces lipid microdomain formation in a fluid PC/SM membrane. Biochemistry 37, 17562–17570.

    Article  PubMed  CAS  Google Scholar 

  53. Lasch J., Berdichevsky V. R., Torchilin V. P., Koelsch R., and Kretschmer K. (1983) A method to measure critical detergent parameters: preparation of liposomes. Analyt. Biochem. 33, 486–491.

    Article  Google Scholar 

  54. Jiskoot W., Teerlink T., Beuvery E. C., and Crommelin D. J. (1986) Preparation of liposomes via detergent removal from mixed micelle by dilution. The effect of bilyer composition and process parameters on liposome characteristics. Pharm. Weekbl. [Sci.] 8, 259–265.

    CAS  Google Scholar 

  55. Killian J. A., Trouard T. P., Greathouse D. V., Chupin V., and Lindblom G. (1994) A general method for the preparation of mixed micelles of hydrophobic peptides and SDS. FEBS Lett. 348, 161–165.

    Article  PubMed  CAS  Google Scholar 

  56. Degrip W. J., Vanoostrum J., and Bovee-Geurts P. H. (1998) Selective detergent extraction from mixed detergent/lipid/protein micelles using cyclodextrin inclusion compounds: a novel generic approach for the preparation of proteoliposomes. Biochem. J. 330, 667–674.

    PubMed  CAS  Google Scholar 

  57. Oberholzer T., Meyer E., Amato I., Lustig A., and Monnard P. A. (1999) Enzymatic reactions in liposomes using the detergent-induced liposome loading method. Biochim. Biophys. Acta 141, 57–68.

    Google Scholar 

  58. Basu M., De T., Das K. K., Kyle J. W., Chon H. C., Schaeper R., and Basu S. (1987) Glycolipid glycosyltransferases. Methods Enzymol. 138, 595–607.

    Google Scholar 

  59. Ghosh S., Das K. K., Daussin F., and Basu S. (1990) Effect of fatty acid moiety of Pl and ceramide on GalT-3 from embryonic chicken brains. Ind. J. Biochem. Biophys. 27, 379–385.

    CAS  Google Scholar 

  60. Basu S., Ghosh S., Basu M., Hawes J. W., Das K. K., Zhang B. J., et al. (1990) Carbohydrate and hydrophobic-carbohydrate recognition sites (CARS and HY-CARS) in solubilized glycosyltransferases. Ind. J. Biochem. Biophys. 27, 386–395.

    CAS  Google Scholar 

  61. Cotantino-Ceccarini E. and Cestelli A. (1981) A novel assay method for GlcCer and galcer biosynthesis. Methods Enzymol. 72, 384–391.

    Article  Google Scholar 

  62. Basu S. (1991) Serendipity of ganglioside biosynthesis. Glycobiology 1, 469–475.

    Article  PubMed  CAS  Google Scholar 

  63. Basu S., Basu M., Dastgheib S., and Hawes J. W. (1998) Biosynthesis and regulation of glycosphingolipids in Comprehensive Natural Products Chemistry, vol. 3, Carbohydrates (Barton D. H. R., Nakanishi K., Meth-Cohn O., and Pinto M.) Pergamon Press, New York, pp. 107–128.

    Google Scholar 

  64. Basu S., Basu M., Das K. K., Daussin F., Schaeper R. J., Banerjee P., et al. (1988) Solubilized glycosyltransferases and biosynthesis in vitro of glycolipids. Biochimie 70, 1551–1563.

    Article  PubMed  CAS  Google Scholar 

  65. Basu S. and Basu M. (1999) Glycosyltransferases in glycosphingolipid biosynthesis, in Oligosaccharides in Chemistry and Biology—A Comprehensive Handbook (Ernst B., Sinay P., and Hart G., eds.), Wiley-VCH Verlag GmbH, Germany, pp. 329–347.

    Google Scholar 

  66. Basu S., Schultz A., Basu M., and Roseman S. (1971) Synthesis of Gal-Cer by GalT from ECB. J. Biol. Chem. 243, 4272–4279.

    Google Scholar 

  67. Cestelli A., White F. V., and Costantino-Ceccarini E. (1979) The use of liposomes as acceptors for the assay of lipid glycosyltransferases from rat brain. Biochim. Biophys. Acta 572, 283–292.

    PubMed  CAS  Google Scholar 

  68. Mitranic M. M. and Moscarello M. A. (1980) The influence of various lipids on the activity of bovine milk galactosyltransferase. Can. J. Biochem. 58, 809–814.

    Article  PubMed  CAS  Google Scholar 

  69. Mitranic M. M., Boggs J. M., and Moscarello M. A. (1983) Modulation of bovine milk galactosyltransferase activity by lipids. J. Biol. Chem. 258, 8630–8636.

    PubMed  CAS  Google Scholar 

  70. Moscarello M. A., Mitranic M. M., and Deber C. M. (1986) The modulation of bovine milk D-galacosyltransferase by various phosphatidylethanolamines. Carbohydr. Res. 149, 47–58.

    Article  PubMed  CAS  Google Scholar 

  71. Mitranic M. M., Boggs J. M., and Moscarello M. A. (1982) The effect of linoleic acid and benzyl alcohol on rat liver Golgi membrane GalT and some soluble glycosyltransferases. Biochim. Biophys. Acta 693, 75–84.

    Article  PubMed  CAS  Google Scholar 

  72. Basu M. and Basu S. (1972) Biosynthesis in vitro of nLcOse4Cer by a GalT from rabbit bone marrow. J. Biol. Chem. 247, 1489–1495.

    PubMed  CAS  Google Scholar 

  73. Basu S., Weng S. W., Tang H., Khan F., Rossi F., and Basu S. (1996) Biosynthesis in vitro of nLcOse4Cer by a GalT-4 from mouse T-lymphoma. Glyconjugates J. 13, 423–432.

    Article  CAS  Google Scholar 

  74. Ghosh S., Basu S. S., and Basu S. (1992) Isolation of a cDNA clone for b1-4GalT from ECB and comparison to its mammalian homologs. Biochem. Biophys. Res. Commun. 189, 1215–1222.

    Article  PubMed  CAS  Google Scholar 

  75. Basu S., Ghosh S., Basu S. S., Kyle J. W., Li Z., and Basu M. (1993) Regulation of expression of neo-lactoglycolipids and cloning of GalT-4 from ECB. Ind. J. Biochem. Biophys. 30, 315–323.

    CAS  Google Scholar 

  76. Basu S. S., Dastgheib S., Ghosh S., Basu M., Kelly P., and Basu S. (1998) Purification and characterization of avian glycolipid:β-galactosyl-transferases. Acta Biochim. Pol. 45, 451–467.

    PubMed  CAS  Google Scholar 

  77. Basu M. and Basu S. (1973) Enzymatic synthesis of a blood-group B-specific pentaglycosylceramide by an a-galactosyltransferase from rabbit bone marrow. J. Biol. Chem. 248, 1700–1706.

    PubMed  CAS  Google Scholar 

  78. Basu S., Kaufman B. W., and Roseman S. (1965) Coversion of Tay-Sachs ganglioside to GM1. J.Biol. Chem. 240, PC4115–4118.

    CAS  Google Scholar 

  79. Kaufman B. W., Basu S., and Roseman S. (1966) Studies on the biosynthesis of gangliosides, in Inborn Disorders of Sphingolipid Metabolism (Aronson S. M. and Volk B. W., eds.), Pergamon Press, New York, pp. 193–213.

    Google Scholar 

  80. Ghosh S., Kyle J.W., Dastgheib S., Daussin F., Li Z., and Basu S. (1995) Purification, properties and immunological characterization of GalT-3 from chicken brain. Glycoconjugate J. 12, 838–847.

    Article  CAS  Google Scholar 

  81. Das. K. K., Basu M., Basu S., Chou D. K. H., and Jungalwala F. (1991) Biosynthesis in vitro of HNK-1 epitope by GlcAT-1 from ECB. J. Biol. Chem. 266, 5238–55243.

    PubMed  CAS  Google Scholar 

  82. Das K. K., Basu M., Li Z., Basu S., and Jungalwala F. (1990) GlcAT-1 from embryonic chicken brain and its inhibition by D-erythro-sphingosine. Ind. J. Biochem. Biophys. 27, 396–401.

    CAS  Google Scholar 

  83. Nilsson O. S. and Dallner G. (1977) Enzyme and phospholipid assymetry in liver microsomal membranes. J. Cell Biol. 72, 568–583.

    Article  PubMed  CAS  Google Scholar 

  84. Graham A. B. and Wood G. C. (1974) On the activation of microsomal GLcAT by PLA. Biochim. Biophys. Acta 370, 431–440.

    PubMed  CAS  Google Scholar 

  85. Whitmer D. I., Russell P. E., and Gollan J. L. (1987) Membrane-membrane interaction associated with rapid transfer of liposomal bilirubin to microsomal UDP-GlcAT. Biochem. J. 244, 41–47.

    PubMed  CAS  Google Scholar 

  86. Hochman Y., Kelley M., and Zakim D. (1983) Modulation of number of ligand binding sites of GlcAT by gel to liquid-crystal phase transition of PC. J. Biol.Chem. 258, 6509–6516.

    PubMed  CAS  Google Scholar 

  87. Rotenberg M. and Zakim D. (1991) Effect of cholesterol on function and thermotropic properties of GlcAT. J. Biol. Chem. 266, 4159–4161.

    PubMed  CAS  Google Scholar 

  88. Basu S. (1966) Biosynthesis of gangliosides. Ph.D. Thesis, University of Michigan, Ann Arbor, Michigan.

    Google Scholar 

  89. Kaufman B., Basu. S., and Roseman S. (1966). Embryonic chicken brain sialyltransferases. Meth. Enzymol. 8, 365–368.

    Google Scholar 

  90. Jourdian G. W., Carlson D. M., and Roseman S. (1963) The enzymatic synthesis of sialyl-lactose. Biochem. Biophys. Res. Commun. 10, 352–358.

    Article  CAS  Google Scholar 

  91. Basu M., Basu S., Stoffyn A., and Stoffyn P. (1982) Biosynthesis of GM1b (GlcNAc) by a sialyltransferase from ECB. J. Biol. Chem. 257, 12765–12769.

    PubMed  CAS  Google Scholar 

  92. Basu S. S., Basu M., Li Z., and Basu S. (1996) Sialyltransferases SAT-3 and SAT-4 from Colo-205. Biochemistry 35, 5166–5174.

    Article  PubMed  CAS  Google Scholar 

  93. Basu S., Basu M., and Basu S. S. (1995) Biological specificity of sialyltransferases. In: Biology of the Sialic Acids (Rosenberg A., ed.) Plenum, New York, pp. 69–94.

    Google Scholar 

  94. Kadowaki H., Grant M. A., and Williams L. A. (1993) Effect of membrane lipids on LacCer molecular species specificity of SAT-1. J. Lipid Res. 34, 905–914.

    PubMed  CAS  Google Scholar 

  95. Kadowaki H. and Grant M. A. (1995) Relation ship of membrane PL composition, Laccer molecular species and the specificity of SAT-1 to the molecular species composition of GM3. J. Lipid Res. 36, 1274–1282.

    PubMed  CAS  Google Scholar 

  96. Schachter H. and Roseman S. (1980) Mammalian glycosyltransferases. Their role in synthesis and function of complex carbohydrates and glycolipids, in The biochemistry of Glycoproteins and Proteoglycans (Lennarz W. J., ed.), Plenum Press, New York, pp. 85–160.

    Google Scholar 

  97. Basu M. and Basu S. (1984) Biosynthesis in vitro of i/I glycolipid in mouse lymphoma. J. Biol. Chem. 259, 12557–12562.

    PubMed  CAS  Google Scholar 

  98. Basu M., Khan F. A., Das K. K., and Basu S. (1991) Biosynthesis in vitro of Lacto-series GSL by GlcNAcTs from human colon carcinoma. Carbohydr. Res. 209, 261–277.

    Article  PubMed  CAS  Google Scholar 

  99. Kean E. L. (1985) Stimulation of GlcNAc-DolP by DolP-Man and PL. J. Biol. Chem. 260, 12561–12571.

    PubMed  CAS  Google Scholar 

  100. Steigerwald J. C., Basu S., Kaufman B., and Roseman S. (1975) J. Biol. Chem. 250, 6727–6734.

    PubMed  CAS  Google Scholar 

  101. Schaeper R.J., Das K. K., Li Z., and Basu S. (1992) Biosynthesis in vitro of Gb & GM2 gangliosides by ECB GalNAcTs. Carbohydr. Res. 236, 227–244.

    Article  PubMed  CAS  Google Scholar 

  102. Yusuf H. K., Pohlentz G., Schwarzmann G., and Sandhoff K. (1985) Ganglioside biosynthesis in rat liver Golgi apparatus: stimulation by PG and inhibition by tunicamycin. Adv. Exp. Med. Biol. 174, 227–239.

    Google Scholar 

  103. Chein J. L., Williams T., and Basu S. (1973) Biosynthesis of globoside by GalNAcT in ECB. J. Biol. Chem. 248, 1778–1785.

    Google Scholar 

  104. Das K. K., Basu M., Basu S., and Evans C. H. (1986) Carbohydr. Res. 149, 119–137.

    Article  PubMed  CAS  Google Scholar 

  105. Basu S., Chein J. L., and Basu M. (1975) Biosynthesis of H glycolipid by FucT-2 from bovine spleen. J. Biol. Chem. 250.

    Google Scholar 

  106. Basu M., Hawes J. W., Li Z., Ghosh S., Khan F., Zhang B., and Basu S. (1991) Glycobiology 1, 527–535.

    Article  PubMed  CAS  Google Scholar 

  107. Basu M., Basu S. S., Li Z., Tang H., and Basu S. (1993) Biosynthesis and regulation of Lex and SA-Lex glycolipids in metastatic human colon carcinoma cells. Ind. J. Biochem. Biophys. 30, 324–332.

    CAS  Google Scholar 

  108. Hawes, J. W. (1991) Ph.D. Thesis. University of Notre Dame. Characterization of a-L-fucosyltransferases from neuronal and non-neuronal tissues.

    Google Scholar 

  109. Serres-Guillaumond M., Broquet P., and Louisot P. (1985) Involvement of Pl in the modulation of a membrane-bound brain FucT. Can. J. Biochem. Cell Biol. 63, 296–304.

    Article  PubMed  CAS  Google Scholar 

  110. Paulson J. C. and Colley K. J. (1989) Glycosyltransferases: structure localization and control of cell type-specific glycosylation. J. Biol. Chem. 264, 17615–17618.

    PubMed  CAS  Google Scholar 

  111. Bendiak B. (1990) A common peptide stretch among enzymes localized in Golgi apparatus. Biochem. Biophys. Res. Commun. 170, 879–882.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Basu, M., Basu, S. (2002). Micelles and Liposomes in Metabolic Enzyme and Glycolipid Glycosyltransferase Assays. In: Basu, S.C., Basu, M. (eds) Liposome Methods and Protocols. Methods in Molecular Biology, vol 199. Humana Press. https://doi.org/10.1385/1-59259-175-2:107

Download citation

  • DOI: https://doi.org/10.1385/1-59259-175-2:107

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-845-5

  • Online ISBN: 978-1-59259-175-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics