The v-erbA Oncogene

Assessing Its Differentiation-Blocking Ability Using Normal Chicken Erythrocytic Progenitor Cells
  • Olivier Gandrillon
Part of the Methods in Molecular Biology book series (MIMB, volume 202)


The v-erbA oncogene is the most clear-cut case of an oncogene that acts by blocking a differentiation sequence (for a review, see ref. 1). It has been discovered as one of the two oncogenes carried by the avian erythroblastosis virus (AEV), a leukemia-inducing retrovirus. It is derived from the c-erbA protooncogene, which encodes the α form of the nuclear receptor for the thyroid hormone triiodothyronine (T3Rα) (2,3); for a detailed description of the structural differences between v-erbA and T3Rα, see ref. 4). Thyroid hormone receptors belong to the large superfamily of structurally and functionally related receptors that includes the receptors for thyroid hormone (T3R), retinoic acid (either all-trans or 9-cis isoforms, RARs and RXRs) and vitamin D3 (VD3R), which are all lipophilic ligand-regulated transcription factors (5).


Viral Stock Butyl Rubber Stopper Human Recombinant Protein Differentiation Blockade Dominant Negative Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gandrillon, O., Rascle, A., and Samarut, J. (1995) The v-erbA oncogene: a superb tool for dissecting the involvement of nuclear hormone receptors in differentia-tion and neoplasia. Int. J. Oncol. 6, 215–231.Google Scholar
  2. 2.
    Sap, J., Munoz, A., Damm, K., et al. (1986) The c-erbA protein is a high-affinity receptor for thyroid hormone. Nature 324, 635–640.PubMedCrossRefGoogle Scholar
  3. 3.
    Weinberger, C., Thompson, C. C., Ong, E. S., Lebo, R., Gruol, D. J., and Evans, R. M. (1986). The c-erb-A gene encodes a thyroid hormone receptor. Nature 324, 641–646.PubMedCrossRefGoogle Scholar
  4. 4.
    Rascle, A., Gandrillon, O., Cabello, G., and Samarut, J. (1997) The v-erbA oncogene, in Oncogenes as Transcriptional Regulators (Ghysdael, J. and Yaniv, M., eds.) Birkhäuser Publishing Ltd, Basel, pp. 119–165.Google Scholar
  5. 5.
    Mangelsdorf, D. J., Umesono, K., and Evans, R. M. (1994) Theretinoidreceptors. In The Retinoids: Biology, Chemistry and Medicine, (Sporn, M. B., Roberts, A. B., and Goodman, D. S., eds.) Raven Press Ltd, New York, pp. 319–349.Google Scholar
  6. 6.
    Damm, K., Thompson, C. C., and Evans, R. M. (1989) Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339, 593–597.PubMedCrossRefGoogle Scholar
  7. 7.
    Sharif, M. and Privalsky, M. L. (1991) v-erbA oncogene function in neoplasia correlates with its ability to repress retinoic acid receptor action. Cell 66, 885–893.PubMedCrossRefGoogle Scholar
  8. 8.
    Urnov, F. D., Yee, J., Sachs, L., et al. (2000). Targeting of N-CoR and histone deacetylase 3 by the oncoprotein v-ErbA yields a chromatin infrastructure-depen-dent transcriptional repression pathway. Embo J. 19, 4074–4090.PubMedCrossRefGoogle Scholar
  9. 9.
    Thormeyer, D. and Baniahmad, A. (1999) The v-erbA oncogene (review). Int. J. Mol.Med. 4, 351–358.PubMedGoogle Scholar
  10. 10.
    Stunnenberg, H. G., Garcia-Jimenez, C., and Betz, J. L. (1999). Leukemia: the sophisticated subversion of hematopoiesis by nuclear receptor oncoproteins. Biochim. Biophys. Acta 1423, F15–F33.PubMedGoogle Scholar
  11. 11.
    Chen, J. D. and Evans, R. M. (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457.PubMedCrossRefGoogle Scholar
  12. 12.
    Hörlein, A. J., Näär, A. M., Heinzel, T., et al. (1995) Ligand-independent repres-sion by the thyroid horone receptor mediated by a nuclear hormone co-repressor. Nature 377, 397–404.PubMedCrossRefGoogle Scholar
  13. 13.
    Desbois, C., Aubert, D., Legrand, C., Pain, B., and Samarut, J. (1991) A novel mechanism of action for the v-erbA oncogene: abrogation of the inactivation of AP-1 transcription factor by retinoic acid receptor and thyroid hormone receptor. Cell 67, 731–740.PubMedCrossRefGoogle Scholar
  14. 14.
    Schule, R., Rangarajan, P., Yang, N., et al. (1991) Retinoic acid is a negative regulator of AP-1-responsive genes. Proc. Natl. Acad. Sci. USA 88, 6092–6096.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang, X. K., Wills, K. N., Husmann, M., Hermann, T., and Pfahl, M. (1991) Novel pathway for thyroid hormone receptor action through interaction with jun and fos oncogene activities. Mol. Cell. Biol. 11, 6016–6025.PubMedGoogle Scholar
  16. 16.
    Schroeder, C., Gibson, L., Zenke, M., and Beug, H. (1992b) Modulation of nor-mal erythroid differentiation by the endogenous thyroid hormone and retinoic acid receptors: a possible target for v-erbA oncogene action. Oncogene 7, 217–227.PubMedGoogle Scholar
  17. 17.
    Gandrillon, O., Ferrand, N., Michaille, J.-J., Roze, L., Zile, M. H., and Samarut, J. (1994) c-erbAalpha/T3R and RARs control commitment of hematopoietic self-renewing progenitor cells to apoptosis or differentiation and are antagonized by the v-erbA oncogene. Oncogene 9, 749–758.PubMedGoogle Scholar
  18. 18.
    Bauer, A., Mikulits, W., Lagger, G., Stengl, G., Brosch, G., and Beug, H. (1998) The thyroid hormone receptor functions as a ligand-operated developmental switch between proliferation and differentiation of erythroid progenitors. Embo J. 17, 4291–4303.PubMedCrossRefGoogle Scholar
  19. 19.
    Boucher, P., Koning, A., and Privalski, M. L. (1988) The avian erythroblastosis virus erb A oncogene encodes a DNA-binding protein exhibiting distinct nuclear and cytoplasmic subcellular localizations. J. Virol. 62, 534–544.PubMedGoogle Scholar
  20. 20.
    Mikulits, W., Schranzhofer, M., Bauer, A., et al. (1999) Impaired ferritin mRNA translation in primary erythroid progenitors: shift to iron-dependent regulation by the v-erbA oncoprotein. Blood 94, 4321–4332.PubMedGoogle Scholar
  21. 21.
    Rascle, A., Ghysdael, J., and Samarut, J. (1994) c-erbA, but not v-erbA, competes with a putative erythroid repressor for binding to the CAII promoter. Oncogene 9, 2853–2867.PubMedGoogle Scholar
  22. 22.
    Barettino, D., Bugge, T. H., Bartunek, P., et al. (1993) Unliganded T3R, but not its oncogenic variant, v-erbA, suppresses RAR-dependent transactivation by titrating out RXR. EMBO J. 12, 1343–1354.PubMedGoogle Scholar
  23. 23.
    Chen, H. W. Smitmcbride, Z., Lewis, S., Sharif, M., and Privalsky, M. L. (1993) Nuclear hormone receptors involved in neoplasia: erb-A exhibits a novel DNA sequence specificity determined by amino acids outside of the zinc-finger domain. Mol. Cell Biol. 13, 2366–2376.PubMedGoogle Scholar
  24. 24.
    Subauste, J. S. and Koenig, R. J. (1995) Comparison of the DNA binding specific-ity and function of v-ErbA and thyroid hormone receptor alpha1. J. Biol. Chem. 270, 7957–7962.PubMedCrossRefGoogle Scholar
  25. 25.
    Judelson, C. and Privalsky, M. L. (1996) DNA recognition by normal and onco-genic thyroid hormone receptors-unexpected diversity in half-site specificity controlled by non-zinc-finger determinants. J. Biol. Chem. 271, 10,800–10,805.PubMedCrossRefGoogle Scholar
  26. 26.
    Gandrillon, O., Jurdic, P., Benchaibi, M., Xiao, J.-H., Ghysdael, J., and Samarut, J. (1987) Expression of the v-erb A oncogene in chicken embryo fibroblasts stimulates their proliferation in vitro and enhances tumor growth in vivo. Cell 49, 687–697.PubMedCrossRefGoogle Scholar
  27. 27.
    Garrido, C., Li, R. P., Samarut, J., Gospodarowicz, D., and Saule, S. (1993). v-erbA cooperates with bFGF in neuroretina cell transformation. Virology 192, 578–586.PubMedCrossRefGoogle Scholar
  28. 28.
    Iglesias, T., Llanos, S., López-Barahona, M., et al. (1995) Induction of platelet-derived growth factor B/c-sis by the v-erbA oncogene in glial cells. Oncogene 10, 1103–1110.PubMedGoogle Scholar
  29. 29.
    Llanos, S., Iglesias, T., Riese, H. H., Garrido, T., Caelles, C., and Munoz, A. (1996) V-erbA oncogene induces invasiveness and anchorage-independent growth in cultured glial cells by mechanisms involving platelet-derived growth factor. Cell Growth Differ. 7, 373–382.PubMedGoogle Scholar
  30. 30.
    Munoz, A., Wrighton, C., Seliger, B., Bernal, J., and Beug, H. (1993). Thyroid hormone receptor/c-erbA: control of commitment and differentiation in the neu-ronal/chromaffin progenitor line PC12. J. Cell Biol. 121, 423–438.PubMedCrossRefGoogle Scholar
  31. 31.
    Cassar-Malek, I., Marchal, S., Altabef, M., Wrutniak, C., Samarut, J., and Cabello, G. (1994) Stimulation of quail myoblast terminal differentiation by the v-erbA oncogene. Oncogene 9, 2197–2206.PubMedGoogle Scholar
  32. 32.
    Kahn, P., Frykberg, L., Brady, C., et al. (1986). v-erb A cooperates with sarcoma oncogenes in leukemic cell transformation. Cell 45, 349–356.PubMedCrossRefGoogle Scholar
  33. 33.
    Bachnou, N., Laudet, V., Jaffredo, T., Quatannens, B., Saule, S., and Dieterlen-Lievre, F. (1991) Cooperative effect of v-myc and v-erbA in the chick embryo. Oncogene 6, 1041–1047.PubMedGoogle Scholar
  34. 34.
    Metz, T. and Graf, T. (1992) The nuclear oncogenes v-erbA and v-ets cooperate in the induction of avian erythroleukemia. Oncogene 7, 597–605.PubMedGoogle Scholar
  35. 35.
    Khazaie, K., Panayotou, G., Aguzzi, A., Samarut, J., Gazzolo, L., and Jurdic, P. (1991) EGF promotes in vivo tumorigenic growth of primary chicken embryo fibroblasts expressing v-myc and enhances in vitro transformation by the v-erbA oncogene. Oncogene 6, 21–28.PubMedGoogle Scholar
  36. 36.
    Barlow, C., Meister, B., Lardelli, M., Lendahl, U., and Vennström, B. (1994) Thy-roid abnormalities and hepatocellular carcinoma in mice transgenic for v-erbA. EmboJ. 13, 4241–4250.Google Scholar
  37. 37.
    Meyer, S., LaBudda, K., McGlade, J., and Hayman, M. J. (1994) Analysis of the role of the Shc and Grb2 proteins in signal transduction by the v-ErbB protein. Mol. Cell. Biol. 14, 3253–3262.PubMedGoogle Scholar
  38. 38.
    Disela, C., Glineur, C., Bugge, T., et al. (1991) v-erbA overexpression is required to extinguish c-erbA function in erythroid cell differentiation and regulation of the erb A target CAII. Genes Dev. 5, 2033–2047.PubMedCrossRefGoogle Scholar
  39. 39.
    Pain, B., Melet, F., Jurdic, P., and Samarut, J. (1990) The carbonic anhydrase II gene, a gene regulated by thyroid hormone and erythropoietin, is repressed by the v-erbA oncogene in erythrocytic cells. New Biol. 2, 284–294.PubMedGoogle Scholar
  40. 40.
    Zenke, M., Munoz, A., Sap, J., Vennstrom, B., and Beug, H. (1990) v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA. Cell 61, 1035–1049.PubMedCrossRefGoogle Scholar
  41. 41.
    Gandrillon, O. and Samarut, J. (1998) Role of the different RAR isoforms in con-trolling the erythrocytic differentiation sequence. Interference with the v-erbA and p135gap-myb-ets nuclear oncogenes. Oncogene 16, 563–574.PubMedCrossRefGoogle Scholar
  42. 42.
    Jepsen, K., Hermanson, O., Onami, T. M., et al. (2000). Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102, 753–763.PubMedCrossRefGoogle Scholar
  43. 43.
    Hayman, M. J., Kitchener, G., Knight, J., McMahon, J., Watson, R., and Beug, H. (1986) Analysis of the autophosphorylation activity of transformation defective mutants of avian erythroblastosis virus. Virology 150, 270–275.PubMedCrossRefGoogle Scholar
  44. 44.
    Gandrillon, O., Schmidt, U., Beug, H., and Samarut, J. (1999) TGFb cooperates with TGFa to induce the self-renewal of normal erythrocytic progenitors: Evi-dence for an autocrine mechanism. EMBO J. 18, 2764–2781.PubMedCrossRefGoogle Scholar
  45. 45.
    Apfel, C., Bauer, F., Crettaz, M., et al. (1992) A retinoic acid receptor alpha antagonist selectively counteracts retinoic acid effects.Proc. Natl. Acad. Sci. USA 89, 7129–7133.CrossRefGoogle Scholar
  46. 46.
    Benchaibi, M., Mallet, F., Thoraval, P., et al. (1989) Avian retroviral vectors derived from avian defective leukemia virus: role of the translational context of the inserted gene on efficiency of the vectors. Virology 169, 15–26.PubMedCrossRefGoogle Scholar
  47. 47.
    Hughes, S. H., Greenhouse, J. J., Petropoulos, C. J., and Sutrave, P. (1987). Adap-tor plasmids simplify the insertion of foreign DNA into helper-independent retro viral vectors. J. Virol. 61, 3004–3012.PubMedGoogle Scholar
  48. 48.
    Jurdic, P., Treilleux, I., Vandel, L., et al. (1995) Tumor induction by v-Jun homodimers in chickens. Oncogene 11, 1699–1709.PubMedGoogle Scholar
  49. 49.
    Kawai, S. and Nishizawa, M. (1984) New procedure for DNA transfection with polycation and dimethyl sulfoxide. Mol. Cell Biol. 4, 1172–1174.PubMedGoogle Scholar
  50. 50.
    Vogt, P. K. (1969) Focus assay of Rous sarcoma virus, in Fundamental Tech-niques in Virology (Habel, K. and Salzman, N. P., eds.) Academic Press, New York, pp. 198–211.Google Scholar
  51. 51.
    Moscovici, C., Moscovici, M. G., Jimenez, H., Lai, M. M. C., Hayman, M. J., and Vogt, P. K. (1977) Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell 11, 95–103.PubMedCrossRefGoogle Scholar
  52. 52.
    Samarut, J. (1978) Isolation of an erythropoietic stimulating factor from the serum of anemic chicks. Exp. Cell Res. 115, 123–126.PubMedCrossRefGoogle Scholar
  53. 53.
    Yamamoto, T., Hihara, H., Nishida, T., Kawai, S., and Toyoshima, K. (1983) A new avian erythroblastosis virus, AEV-H, carries erbB gene responsible for the induction of both erythroblastosis and sarcomas. Cell 34, 225–232.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Olivier Gandrillon
    • 1
  1. 1.Signalisations et Identités Cellulaires, Centre de Génétique Moléculaire et CellulaireUMR CNRS, Université Claude Bernard Lyon IVilleurbanne CedexFrance

Personalised recommendations