Mass Spectrometric Analysis of Protein Phosphorylation

  • Débora Bonenfant
  • Thierry Mini
  • Paul Jenö

Abstract

Phosphorylation is one the most frequently occurring posttranslational modifications in proteins, playing an essential role in transferring signals from the outside to the inside of a cell and in regulating many diverse cellular processes such as growth, metabolism, proliferation, motility, and differentiation. It is estimated that up to one third of all proteins in a typical mammalian cell are phosphorylated (1). Phosphorylation is carried out by a vast group of protein kinases which are thought to constitute 3% of the entire eukaryotic genome (1-3). To decipher the recognition signal of protein kinases and protein phosphatases acting on a given molecular target, and to understand how the activity of the target protein is regulated by phosphorylation, it is important to define the sites and the extent of phosphorylation at each specific site.

Keywords

HPLC Urea Serine Lysine Arginine 

References

  1. 1.
    Hubbard, M. J., and Cohen, P. (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci. 18, 172–177.PubMedCrossRefGoogle Scholar
  2. 2.
    Hunter, T. (1991) Protein kinase classification. Meth. Enzymol. 200, 3–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Cohen, P. (1992) Signal integration at the level of protein kinases, protein phosphatases, and their substrates. Trends Biochem. Sci. 17, 408–413.PubMedCrossRefGoogle Scholar
  4. 4.
    Boyle, W. J., van der Geer, P., and Hunter, T. (1991) Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Meth. Enzymol. 201, 110–152.PubMedCrossRefGoogle Scholar
  5. 5.
    Luo, K., Hurley, T. R., and Sefton, B. M. (1991) Cyanogen bromide cleavage and proteolytic peptide mapping of proteins immobilized to membranes. Meth. Enzymol. 201, 149–152.PubMedCrossRefGoogle Scholar
  6. 6.
    Wettenhall, R. E. H., Aebersold, R. H., and Hood, L. E. (1991) Solid-phase sequenc-ing of 32P-labeled phosphopeptides at picomole and subpicomole levels. Meth. Enzymol. 201, 186–199.PubMedCrossRefGoogle Scholar
  7. 7.
    Kuiper, G. G. J. M. and Brinkmann, A. O. (1995) Phosphotryptic peptide analysis of the human androgen receptor: detection of a hormone-induced phosphopeptide. Biochemistry 34, 1851–1857.PubMedCrossRefGoogle Scholar
  8. 8.
    Winz, R., Hess, D., Aebersold, R., and Brownsey, R. W. (1994) Unique structural features and differential phosphorylation of the 280-kDa component (isozyme) of rat liver acetyl-CoA carboxylase. J. Biol. Chem. 269, 14,438–14,445.PubMedGoogle Scholar
  9. 9.
    Payne, M. D., Rossomando, A. J., Martino, P., Erickson, A., K., Her, J.-H., and Shabanowitz, J. (1991) Identification of the regulatory phosphorylation sites in pp42/ mitogen-activated protein kinase (MAP kinase). EMBO J. 10, 885–892.PubMedGoogle Scholar
  10. 10.
    Resing, K. A., Johnson, R. S. & Walsh, K. A. (1995) Mass spectrometric analysis of 21 phosphorylation sites in the internal repeat of rat profilaggrin, precursor of an intermediate filament associated protein. Biochemistry 34, 9477–9487.PubMedCrossRefGoogle Scholar
  11. 11.
    Verma, R., Annan, R. S., Huddleston, M. J., Carr, S. A., Reynard, G., and Deshaies, R. J. (1997) Phosphorylation of Siclp by G1 Cdk required for its degradation and entry in S phase. Science 278, 455–460.PubMedCrossRefGoogle Scholar
  12. 12.
    Kalo, M. S. and Pasquale, E. B. (1999) Multiple in vivo tyrosine phosphorylation sites in EphB receptors. Biochemistry 38, 14,396–14,408.PubMedCrossRefGoogle Scholar
  13. 13.
    Carr, S. A., Huddleston, M. J., and Annan, R. S. (1996) Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Analyt. Biochem. 239, 180–192.PubMedCrossRefGoogle Scholar
  14. 14.
    Nuwaysir, L. M. and Stults, J. T. (1993) Electropsray ionization mass spectrometry of phosphopeptides isolated by on-line imobilized metal-ion affinity chromatography. J. Am. Soc. Mass Spectrom. 4, 662–669.CrossRefGoogle Scholar
  15. 15.
    Watts, J. D., Affolter, M., Krebs, D. L., Wange, R. L., Samelson, L. E., and Aebersold, R. (1994) Identification by electrospray ionization mass spectrometry of the sites of tyrosine phosphorylation induced in activated Jurkat T cells on the protein tyrosine kinase ZAP-70. J. Biol. Chem. 269, 29,520–29,529.PubMedGoogle Scholar
  16. 16.
    Davis, M. T. and Lee, T. D. (1992) Analysis of peptide mixture by capillary high performance liquid chromatography: a practical guide to small-scale separations. Protein Sci. 1, 935–944.PubMedCrossRefGoogle Scholar
  17. 17.
    Schneider, U., Mini, T., Jenö, P., Fisher, P. A., and Stuurman, N. (1999) Phosphorylation of the major Drosophila lamin in vivo: site identification during both M-phase (meiosis) and interphase by electrospray ionization tandem mass spectrometry. Biochemistry 38, 4620-4632.Google Scholar
  18. 18.
    Radimerski, T., Mini, T., Schneider, U., Wettenhall, R. E. H., Thomas, G., and Jenö, P. (2000) Identification of insulin-induced sites of ribosomal protein S6 phosphorylation in Drosophila melanogaster. Biochemistry 39, 5766–5774.PubMedCrossRefGoogle Scholar
  19. 19.
    Byford, M. F. (1991) Biochem. J. 280, 261–265.PubMedGoogle Scholar
  20. 20.
    Covey, T. R. (1995) in Methods in Molecular Biology, Vol. 61, (Chapman, J. R., ed.), Humana Press, Totowa, NJ, pp. 83–99.Google Scholar
  21. 21.
    Covey, T., Shushan, B., Bonner, R., Schröder, W., and Hucho, F., (1991) in Methods in Protein Sequence Analysis (Jörnvall, H., Hoog, J. O., and Gustavsson, A. M. eds.), Birkhäuser, Basel, pp. 249–256.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Débora Bonenfant
    • 1
  • Thierry Mini
    • 1
  • Paul Jenö
    • 1
  1. 1.Department of BiochemistryBiozentrum der Universität BaselSwitzerland

Personalised recommendations