Skip to main content

Analysis of Gene Expression

Reverse Transcription-Polymerase Chain Reaction

  • Protocol
  • 771 Accesses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 56))

Abstract

Numerous techniques have been developed to measure gene expression in tissues and cells. These include coupled reverse transcription and polymerase chain reaction amplification (RT-PCR), Northern blot (see Chapter 20), in situ hybridization (see Chapter 21), RNase protection assays, dot blots, and S1 nuclease assays. Of these methods, RT-PCR is the most sensitive and versatile (1bi1-5). PCR allows amplification of a DNA or cDNA template by greater than one million-fold quickly and reliably (6). Starting with minute amounts of DNA, PCR generates sufficient material for subsequent experimental analyses such as cloning, restriction digestion, electrophoresis, and sequencing. The entire amplification process is performed in just a few hours.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Saiki, R. K., Scharf. S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.

    Article  CAS  PubMed  Google Scholar 

  2. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273.

    CAS  Google Scholar 

  3. Bell, J. (1989) The polymerase chain reaction. Immunol Today, 10, 351–355.

    Article  CAS  PubMed  Google Scholar 

  4. Gibbs, R. A. (1990) DNA amplification by the polymerase chain reaction. Anal. Chem. 62, 1202–1214.

    Article  CAS  PubMed  Google Scholar 

  5. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1992) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. 1986.Biotechnology 24, 17–27.

    Google Scholar 

  6. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    Article  CAS  PubMed  Google Scholar 

  7. Templeton, N.S. (1992) The polymerase chain reaction. History, methods, and applications. Diagn. Mol. Pathol. 1, 58–72.

    Article  CAS  PubMed  Google Scholar 

  8. Frohman, M. A. and Martin, G. R. (1989) Cut, paste and save: New approaches to altering specific genes in mice. Cell 56, 145–147.

    Article  CAS  PubMed  Google Scholar 

  9. Dieffenbach, C. W. and Dveksler, G. S. (1993) Setting up a PCR laboratory. PCR Methods Appl. 3, S2–S7.

    CAS  PubMed  Google Scholar 

  10. Blumberg, D. D. (1987) Creating a ribonuclease-free environment. Meth. Enzymol. 152, 20–24.

    Article  CAS  PubMed  Google Scholar 

  11. Rychlik, W., Spencer, W. J., and Rhoads, R. E. (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res. 18, 6409–6412.

    Article  CAS  PubMed  Google Scholar 

  12. Williams, J. F. (1989) Optimization strategies for the polymerase chain reaction. Biotechniques 7, 762–769.

    Article  CAS  PubMed  Google Scholar 

  13. Wittwer, C. T. and Garling, D. J. (1991) Rapid cycle DNA amplification: time and temperature optimization. Biotechniques 10, 76–83.

    CAS  PubMed  Google Scholar 

  14. Harris, S. and Jones, D. B. (1997) Optimization of the polymerase chain reaction. Br. J. Biomed. Sci. 54, 166–173.

    CAS  PubMed  Google Scholar 

  15. Roux, K. H. (1995) Optimization and troubleshooting in PCR. PCR Methods Appl. 4, S185–S194.

    CAS  PubMed  Google Scholar 

  16. Sellner, L. N. and Turbett, G. R. (1998) Comparison of three RT-PCR methods. Biotechniques 25, 230–234.

    CAS  PubMed  Google Scholar 

  17. Sellner, L. N., CoelenR. J., and Mackenzie, J. S. (1992) A one-tube, one manipulation RT-PCR reaction for detection of Ross River virus. J. Virol. Methods 40, 255–263.

    Article  CAS  PubMed  Google Scholar 

  18. Mallet, F., Oriol, G., Mary, C., Verrier, B., and Mandrand, B. (1995) Continuous RT-PCR using AMV-RT and Taq DNA polymerase: characterization and comparison to uncoupled procedures. Biotechniques 18, 678–687

    CAS  PubMed  Google Scholar 

  19. Birch, D.E. (1996) Simplified hot start PCR. Nature 381, 445–446.

    Article  CAS  PubMed  Google Scholar 

  20. D’Aquila, R. T., Bechtel, L. J., Videler, J. A., Eron, J. J., Gorczyca, P., and Kaplan, J. C. (1991) Maximizing sensitivity and specificity of PCR by pre-amplification heating. Nucleic Acids Res. 19, 3749.

    Article  PubMed  Google Scholar 

  21. Bassam, B. J., and Caetano-Anolles, G. (1993) Automated “hot start” PCR using mineral oil and paraffin wax. Biotechniques 14, 30–34.

    CAS  PubMed  Google Scholar 

  22. Sharkey, D. J., Scalice, E. R., Christy, K. G., Atwood, S. M., Daiss, J. L. (1994) Antibodies as thermolabile switches: high temperature triggering for the polymerase chain reaction. Biotechnology (NY) 12, 506–509.

    Article  CAS  PubMed  Google Scholar 

  23. Kaijalainen, S., Karhunen, P. J., Lalu, K., Lindstrom, K. (1993) An alternative hot start technique for PCR in small volumes using beads of wax-embedded reaction components dried intrehalose. Nucleic Acids Res. 21, 2959–2960.

    Article  CAS  PubMed  Google Scholar 

  24. Kwok, S., and Higuchi, R. (1989) Avoiding false positives with PCR. Nature (London) 339, 237–238.

    Article  CAS  PubMed  Google Scholar 

  25. Victor, T., Jordaan, A., du Toit, R., Van Helden, P. D. (1993) Laboratory experience and guidelines for avoiding false positive polymerase chain reaction results. Eur. J. Clin. Chem. Clin. Biochem. 31, 531–535.

    CAS  PubMed  Google Scholar 

  26. Grillo, M., Margolis, F. L. (1990) Use of reverse transcriptase polymerase chain reaction to monitor expression of intronless genes. Biotechniques 9, 266–268.

    Google Scholar 

  27. Huang, Z., Fasco, M. J., Kaminsky, L. S. (1996) Optimization of Dnase I removal of contaminating DNA from RNA for use in quantitative RNA-PCR. Biotechniques 20, 1012–1014, 1016, 1018-1020.

    CAS  PubMed  Google Scholar 

  28. Hengen, P. N. (1995) Fidelity of DNA polymerases for PCR. Trends Biochem. Sci. 20, 324–325.

    Article  CAS  PubMed  Google Scholar 

  29. Longley, M. J., Bennett, S. E., and Mosbaugh, D. W. (1990) Characterization of the 5′ to 3′ exonuclease associated with Thermus aquaticus DNA polymerase. Nucleic Acids Res. 18, 7317–7322.

    Article  CAS  PubMed  Google Scholar 

  30. Bell, D. A., DeMarini, D. M. (1991) Excessive cycling converts PCR products to random-length higher molecular weight fragments. Nucleic Acids Res. 19, 5079.

    Article  CAS  PubMed  Google Scholar 

  31. Eckert, K. A., and Kunkel, T. A. (1990) High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res. 18, 3739–3744.

    Article  CAS  PubMed  Google Scholar 

  32. Eckert, K. A., and Kunkel, T. A. (1991) DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Appl. 1, 17–24.

    CAS  PubMed  Google Scholar 

  33. Ellsworth, D. L., Rittenhouse, K. D., Honeycutt, R. L. (1993) Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques 14, 214–217.

    CAS  PubMed  Google Scholar 

  34. Baldino, F., Chesselet, M. F., Lewis, M. E. (1989) High resolution in situ hybridization histochemistry, Methods Enzymol. 168, 761–777.

    Article  CAS  PubMed  Google Scholar 

  35. Sellner, L. N., Coelen, R. J., Mackenzie, J. S. (1992) Reverse transcriptase inhibits Taq polymerase activity. Nucleic Acids Res. 20, 1487–1490.

    Article  CAS  PubMed  Google Scholar 

  36. Chumakov, K. M. (1994) Reverse transcriptase can inhibit PCR and stimulate primer-dimer formation. PCR Meth. Appl. 4, 62–64.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Haddad, EB., Rousell, J. (2001). Analysis of Gene Expression. In: Rogers, D.F., Donnelly, L.E. (eds) Human Airway Inflammation. Methods in Molecular Medicine, vol 56. Humana Press. https://doi.org/10.1385/1-59259-151-5:229

Download citation

  • DOI: https://doi.org/10.1385/1-59259-151-5:229

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-923-0

  • Online ISBN: 978-1-59259-151-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics