Adenoviral-Vector-Mediated Gene Transfer to Dendritic Cells

  • Wenru Song
  • Ronald G. Crystal
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 64)


Dendritic cells (DC) are the most potent antigen presenting cells capable of initiating T-cell-dependent immune responses (1-5). This biologic potential can be harnessed to elicit effective antigen-specific immune responses by transferring the relevant antigens to the DC. Once the DC have been mobilized and purified, the relevant antigens can be transferred to the DC as intact proteins, or as peptides representing specific epitopes, or with gene transfer using sequences of DNA or RNA coding for the pertinent antigen(s) (6-15). Theoretically, genetically modifying DC with genes coding for specific antigens has potential advantages over pulsing the DC with peptides repeating the antigen or antigen fragment. First, the genetically modified DC may present previously unknown epitopes in association with different MHC molecules. Second, gene transfer to DC ensures that the gene product is endogenously processed, leading to the generation of MHC class I-restricted cytotoxic T lymphocytes (CTL), the effector arm of cell-mediated immune responses. Finally, in addition to genes coding for the antigen(s), genetic modification of the DC can induce genes coding for mediators relevant to generation of the immune response to the antigen(s), further boosting host responses to the antigens presented by the modified DC. Different gene transfer approaches have been explored to genetically modify DC, including retroviral vectors (16-18), recombinant vaccinia virus vectors (19), and recombinant adenovirus (Ad) vectors (19-23). The focus of this chapter is on using recombinant Ad vectors to transfer genes to murine DC. We have used a similar strategy to transfer genes to human DC (24). As an example of the power of this technology, we will describe the use of Ad-vector-modified DC to suppress the growth of tumor cells modified to express a specific antigen.


Dendritic Cell Complete RPMI Medium Potent Antigen Present Cell Relevant Antigen Murine Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Grabbe, S., Beissert, S., Schwarz, T., Granstein, R. D. (1995) Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy? Immunol. Today 16, 117–121.PubMedCrossRefGoogle Scholar
  2. 2.
    Schuler, G. and Steinman, R. M. (1997) Dendritic cells as adjuvants for immunemediated resistance to tumors. J Exp. Med. 6, 1183–1187.CrossRefGoogle Scholar
  3. 3.
    Steinman, R. M. (1991) The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296.PubMedCrossRefGoogle Scholar
  4. 4.
    Young, J. W. and Inaba, K. (1996) Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity. J Exp. Med. 183,7–11.PubMedCrossRefGoogle Scholar
  5. 5.
    Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392, 245–252.PubMedCrossRefGoogle Scholar
  6. 6.
    Grabbe, S., Bruvers, S., Gallo, R. L., Knisely, T. L., Nazareno, R., and Granstein, R. D. (1991) Tumor antigen presentation by murine epidermal cells. J Immunol. 146, 3656–3661.PubMedGoogle Scholar
  7. 7.
    Mayordomo, J. I., Zorina, T., Storkus, W. J., et al. (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Med. 1, 1297–1302.PubMedCrossRefGoogle Scholar
  8. 8.
    Ossevoort, M. A., Feltkamp, M. C., van Veen, K. J., Melief, C. J., and Kast, W.M. (1995) Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor. J Immunother. Emphasis. Tumor. Immunol. 18, 86–94.PubMedGoogle Scholar
  9. 9.
    Boczkowski, D., Nair, S. K., Snyder, D., and Gilboa, E. (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp. Med. 184,465–472.PubMedCrossRefGoogle Scholar
  10. 10.
    Celluzzi, C. M., Mayordomo, J. I., Storkus, W. J., Lotze, M. T., and Falo, L. D. (1996) Peptide-pulsed dendritic cells induce antigen-specific, CTL-mediated protective tumor immunity. J Exp. Med. 183, 283–287.PubMedCrossRefGoogle Scholar
  11. 11.
    Hsu, F. J., Benike, C., Fagnoni, F., et al. (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med. 2, 52–58.PubMedCrossRefGoogle Scholar
  12. 12.
    Mayordomo, J. I., Loftus, D. J., Sakamoto, H., et al. (1996) Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J Exp. Med. 183,1357–1365.PubMedCrossRefGoogle Scholar
  13. 13.
    Paglia, P., Chiodoni, C., Rodolfo, M., and Colombo, M. P. (1996) Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp. Med. 183, 317–322.PubMedCrossRefGoogle Scholar
  14. 14.
    Porgador, A., Snyder, D., and Gilboa, E. (1996) Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol. 156, 2918–2926.PubMedGoogle Scholar
  15. 15.
    Zitvogel, L., Mayordomo, J. I., Tjandrawan, T., et al. (1996) Therapy of murine tumors with tumor peptide-pulsed dendritic cells: Dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp. Med. 183, 87–97.PubMedCrossRefGoogle Scholar
  16. 16.
    Henderson, R. A., Nimgaonkar, M. T., Watkins, S. C., Robbins, P. D., Ball, E. D., and Finn, O. J. (1996) Human dendritic cells genetically engineered to express high levels of the human epithelial tumor antigen mucin (MUC-1) Cancer Res. 56,3763–3770.PubMedGoogle Scholar
  17. 17.
    Reeves, M. E., Royal, R. E., Lam, J. S., Rosenberg, S. A., and Hwu, P. (1996) Retroviral transduction of human dendritic cells with a tumor-associated antigen gene. Cancer Res. 56, 5672–5677.PubMedGoogle Scholar
  18. 18.
    Aicher, A., Westermann, J., Cayeux, S., Willimsky, G., Daemen, K., Blankenstein, T., Uckert, W., Dorken, B., and Pezzutto, A. (1997) Successful retroviral mediated transduction of a reporter gene in human dendritic cells: feasibility of therapy with gene-modified antigen presenting cells. Exp. Hematol. 25, 39–44.PubMedGoogle Scholar
  19. 19.
    Brossart, P., Goldrath, A. W., Butz, E. A., Martin, S., and Bevan, M. J. (1997) Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J Immunol. 158, 3270–3276.PubMedGoogle Scholar
  20. 20.
    Song, W., Kong, H. L., Carpenter, H., et al. (1997) Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp. Med. 186, 1247–1256.PubMedCrossRefGoogle Scholar
  21. 21.
    Wan, Y., Bramson, J., Carter, R., Graham, F., and Gauldie, J. (1997) Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination. Hum. Gene Ther. 8, 1355–1363.PubMedCrossRefGoogle Scholar
  22. 22.
    Dietz, A. B. and Vuk-Pavlovic, S. (1998) High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood 91, 392–398.PubMedGoogle Scholar
  23. 23.
    Mulders, P., Pang, S., Danuull, J., et al. (1998) Highly efficient and consistent gene transfer into dendritic cells utilizing a combination of ultraviolet-irradiated adenovirus and poly(L-lysine) conjugates. Cancer Res. 58, 956–961.PubMedGoogle Scholar
  24. 24.
    Frey, B. M., Hackett, N. R., Bergelson, J. M., et al. (1998) High-efficiency gene transfer into Ex vivo expanded human hematopoietic progenitors and precursor cells by adenovirus vectors. Blood 91, 2781–2792.PubMedGoogle Scholar
  25. 25.
    Crystal, R. G. (1995) Transfer of genes to humans: Early lessons and obstacles to success. Science 270,404–410.PubMedCrossRefGoogle Scholar
  26. 26.
    Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L., and Finberg, R. W. (1997) Isolation of a common receptor for coxsackie b viruses and adenoviruses 2 and 5. Science 275, 1320–1323.PubMedCrossRefGoogle Scholar
  27. 27.
    Wilson, J. M. (1996) Adenoviruses as gene-delivery vehicles. N. Engl. J. Med. 334, 1185–1187.PubMedCrossRefGoogle Scholar
  28. 28.
    Bevan, M. J. (1995) Antigen presentation to cytotoxic T lymphocytes in vivo. J Exp.Med. 182,639–641.PubMedCrossRefGoogle Scholar
  29. 29.
    Germain, R. N. (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76, 287–299.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen, P. W., Wang, M., Bronte, V., Zhai, Y., Rosenberg, S. A., and Restifo, N. P. (1996) Therapeutic antitumor response after immunization with a recombinant adenovirus encoding a model tumor-associated antigen. J. Immunol. 156,224–231.PubMedGoogle Scholar
  31. 31.
    Flanagan, B., Pringle, C. R., and Leppard, K. N. (1997) A recombinant adenovirus expressing the simian immunodeficiency virus Gag antigen can induce long-lived immune responses in mice. J. Gen. Virol. 78, 991–997.PubMedGoogle Scholar
  32. 32.
    Juillard, V., Villefroy, P., Godfrin, D., Pavirani, A., Venet, A., and Guillet, J. G. (1995) Long-term humoral and cellular immunity induced by a single immunization with replication-defective adenovirus recombinant vector. Eur. J. Immunol. 25,3467–3473.PubMedCrossRefGoogle Scholar
  33. 33.
    Rodriques, E. G., Zavala, F., Eichinger, D., Wilson, J. M., and Tsuji, M. (1997) Single immunizing dose of recombinant adenovirus efficiently induces CD8+T cell-mediated protective immunity against malaria. J. Immunol. 158,1268–1274.Google Scholar
  34. 34.
    Song, W., Kong, H.-L., Traktman, P., and Crystal, R. G. (1997) Cytotoxic T lymphocyte responses to proteins encoded by heterologous transgenes transferred in vivo by adenoviral vectors. Hum. Gene Ther. 8, 1207–1217.PubMedCrossRefGoogle Scholar
  35. 35.
    Xiang, Z. Q., Yang, Y., Wilson, J. M., and Ertl, H. C. (1996) A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology 219, 220–227.PubMedCrossRefGoogle Scholar
  36. 36.
    Inaba, K., Inaba, M., Romani, N., et al. (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/ macrophage colony-stimulating factor. J Exp. Med. 176, 1693–1702.PubMedCrossRefGoogle Scholar
  37. 37.
    Rosenfeld, M. A., Siegfried, W., Yoshimura, K., et al. (1991) Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science 252,431–434.PubMedCrossRefGoogle Scholar
  38. 38.
    Rosenfeld, M. A., Yoshimura, K., Trapnell, B. C., et al. (1992) In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68,143–155.PubMedCrossRefGoogle Scholar
  39. 39.
    Hersh, J., Crystal, R. G., and Bewig, B. (1995) Modulation of gene expression after replication-deficient, recombinant adenovirus-mediated gene transfer by the product of a second adenovirus vector. Gene Ther. 2, 124–131.PubMedGoogle Scholar
  40. 40.
    Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen. Virol. 36, 59–74.PubMedCrossRefGoogle Scholar
  41. 41.
    Crystal, R. G., McElvaney, N. G., Rosenfeld, M. A., et al. (1994) Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat. Genet. 8, 42–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Inaba, K., Inaba, M., Deguchi, M., Hagi, K., Yasumizu, R., Ikehara, S., Muramatsu, S., and Steinman, R. M. (1993) Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc. Natl. Acad. Sci. USA 90, 3038–3042.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang, M., Bronte, V., Chen, P. W., et al. (1995) Active immunotherapy of cancer with a nonreplicating recombinant fowlpox virus encoding a model tumor-associated antigen. J Immunol. 154,4685–4692.PubMedGoogle Scholar
  44. 44.
    MacGregor, G. R., Nolan, G. P., Fiering, S., Roederer, M., and Herzenberg, L. A. (1991) Use of E. coli lacZ (β-Galactosidase) as a reporter gene. In Gene transfer and expression protocols. Murray, E. J. (ed.). The Humana Press Inc., Totowa, NJ, pp. 217–235.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Wenru Song
    • 1
  • Ronald G. Crystal
    • 1
  1. 1.Division of Pulmonary and Critical Care Medicine and The New York Hospital–Cornell Medical CenterNew York

Personalised recommendations