Skip to main content

Signature-Tagged Mutagenesis

  • Protocol
Meningococcal Disease

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 67))

  • 850 Accesses

Abstract

Signature-tagged mutagenesis (STM) was originally developed by David Holden while studying the filamentous fungus Aspergillus fumigatus. In attempts to define virulence determinants for this pathogenic fungus, candidate factors were selected by reference to previous circumstantial evidence and knowledge of the pathophysiology of the disease. Genes encoding candidate virulence determinants were isolated, disrupted, and the resulting mutants tested in animal models of disease. This strategy was, however, unsuccessful as none of the candidate genes proved to have a role in pathogenesis, highlighting the limitations of using preconceptions to identify pathogenicity determinants. Largescale genetic approaches had been used to investigate the behavior of pathogenic microbes in tissue culture-based experiments, but such assays do not reflect the diversity of environments experienced by bacteria in a host. At that time, the major limitation to performing genetic screens using complex systems, such as animal models, was that only a single mutant could be assessed in a single assay; STM was devised to circumvent this key stumbling block. By labeling each mutant with a unique DNA sequence tag, it became possible to differentiate individual mutants from each other within a pool (1). A single animal could then be infected with a mixed population of mutants and attenuated strains be identified by their inability to establish infection. Therefore, the essential benefit of STM is that it allows genetic screens to be performed using complex models of pathogenesis so that the advantages of mutational analysis can be combined with biologically relevant assays. Rather than applying STM to A. fumigatus, David Holden’ group decided to first address Salmonella typhimurium pathogenesis to establish proof-in-principle of STM. The work led to the isolation of previously characterized virulence genes and the identification of an entirely novel 40 kb pathogenicity island that had eluded investigators in the field (2). STM has now been successfully applied to a wide range of bacterial (38) and fungal pathogens (9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., and Holden D. W. (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269,400–443.

    Article  CAS  PubMed  Google Scholar 

  2. Shea J. E., Hensel M., Gleeson C., and Holden D. W. (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93, 2593–2597.

    Article  CAS  PubMed  Google Scholar 

  3. Mei J. M., Nourbakhsh F., Ford C. W., and Holden D. W.. (1997) Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol. Microbiol. 26, 399–407.

    Article  CAS  PubMed  Google Scholar 

  4. Chiang S. L. and Mekalanos J. J. (1998) Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol. Microbiol. 27, 797–805.

    Article  CAS  PubMed  Google Scholar 

  5. Darwin A. J. and Miller V. L. (1999) Identification of Yersinia enterocolitica genes affecting survival in an animal host using signature-tagged transposon mutagenesis. Mol. Microbiol. 32, 51–62.

    Article  CAS  PubMed  Google Scholar 

  6. Edelstein P. H., Edelstein M. A., Higa F., and Falkow S. (1999) Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Proc. Natl. Acad. Sci. USA 96,8190–8195.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao H., Li X., Johnson D. E., and Mobley H. L. (1999) Identification of protease and rpoN-associated genes of uropathogenic Proteus mirabilis by negative selection in a mouse model of ascending urinary tract infection. Microbiology 145,185–195.

    Article  CAS  PubMed  Google Scholar 

  8. Camacho L. R., Ensergueix D., Perez E., Gicquel B., and Guilhot C. (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257–267.

    Article  CAS  PubMed  Google Scholar 

  9. Cormack B. P., Ghori N., and Falkow S. (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285, 578–582.

    Article  CAS  PubMed  Google Scholar 

  10. Kathariou S., Stephens D. S., Spellman P., and Morse S. A. (1990) Transposition of Tn916 to different sites in the chromosome of Neisseria meningitidis: a genetic tool for meningococcal mutagenesis. Mol. Microbiol. 4, 729–735.

    Article  CAS  PubMed  Google Scholar 

  11. Nassif X., Puaoi D., and So M. (1991) Transposition of Tn1545-delta 3 in the pathogenic Neisseriae: a genetic tool for mutagenesis. J. Bacteriol. 173, 2147–2154.

    CAS  PubMed  Google Scholar 

  12. Crooke H., Griffiss J. M., John C. M., Lissenden S., Bramley J., Regan T., et al. (1998) Characterization of a sialyltransferase-deficient mutant of Neisseria gonorrhoeae strain F62: instability of transposon Tn1545 delta3 in gonococci and evidence that multiple genetic loci are essential for lipooligosaccharide sialylation. Microb. Pathog. 25(5), 237–252.

    Article  CAS  PubMed  Google Scholar 

  13. Kahler C. M., Carlson R. W., Rahman M. M., Martin L. E., and Stephens D. S. (1996) Two glycosyltransferase genes, lgtF and rfaK, constitute the lipooligosaccharide ice (inner core extension) biosynthesis operon of Neisseria meningitidis. J. Bacteriol. 178,6677–6684.

    CAS  PubMed  Google Scholar 

  14. Swartley J. S. and Stephens D. S. (1994) Identification of a genetic locus involved in the biosynthesis of N-acetyl-D-mannosamine, a precursor of the (alpha 2→8)-linked polysialic acid capsule of serogroup B Neisseria meningitidis. J. Bacteriol. 176, 1530–1534.

    CAS  PubMed  Google Scholar 

  15. Seifert H. S. and So M. (1991) Genetic systems in pathogenic Neisseriae. Methods Enzymol. 204, 342–357.

    Article  CAS  PubMed  Google Scholar 

  16. Kahrs A. F., Bihlmaier A., Facius D., and Meyer T. F. (1994) Generalized transposon shuttle mutagenesis in Neisseria gonorrhoeae: a method for isolating epithelial cell invasion-defective mutants. Mol. Microbiol. 12, 819–831.

    Article  CAS  PubMed  Google Scholar 

  17. Stein D. C., Gunn J. S., Radlinska M., and Piekarowicz A. (1995) Restriction and modification systems of Neisseria gonorrhoeae. Gene 157, 19–22.

    Article  CAS  PubMed  Google Scholar 

  18. Claus H., Frosch M., and Vogel U. (1998) Identification of a hotspot for transformation of Neisseria meningitidis by shuttle mutagenesis using signature-tagged transposons. Mol. Gen. Genet. 259, 363–371.

    Article  CAS  PubMed  Google Scholar 

  19. Polissi A., Pontiggia A., Feger G., Altieri M., Mottl H., Ferrari L., and Simon D. (1998) Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66,5620–5629.

    CAS  PubMed  Google Scholar 

  20. Gwinn M. L., Stellwagen A. E., Craig N. L., Tomb J. F., and Smith H. O. (1997) In vitro Tn7 mutagenesis of Haemophilus influenzae Rd and characterization of the role of atpA in transformation. J. Bacteriol. 179,7315–7320.

    CAS  PubMed  Google Scholar 

  21. Akerley B. J., Rubin E. J., Camilli A., Lampe D. J., Robertson H. M., and Mekalanos J. J. (1998) Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. USA 95, 8927–8932.

    Article  CAS  PubMed  Google Scholar 

  22. Chalmers R. M. and Kleckner N. (1994) Tn10/IS10 transposase purification, activation, and in vitro reaction. J. Biol. Chem. 269, 8029–8035.

    CAS  PubMed  Google Scholar 

  23. Studier F. W., Rosenberg A. H., Dunn J. J., and Dubendorff J. W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185,60–89.

    Article  CAS  PubMed  Google Scholar 

  24. Halling S. M. and Kleckner N. (1982) A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity. Cell 28, 155–163.

    Article  CAS  PubMed  Google Scholar 

  25. Haniford D. B., Chelouche A. R., and Kleckner N. (1989) A specific class of IS 10 transposase mutants are blocked for target site interactions and promote formation of an excised transposon fragment. Cell 59, 385–394.

    Article  CAS  PubMed  Google Scholar 

  26. Elkins C., Thomas C. E., Seifert H. S., and Sparling P. F. (1991) Speciesspecific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J. Bacteriol. 173, 3911–3913.

    CAS  PubMed  Google Scholar 

  27. Bender J. and Kleckner N. (1992) IS10 transposase mutations that specifically alter target site recognition. EMBO J. 11, 741–750.

    CAS  PubMed  Google Scholar 

  28. Morisato D. and Kleckner N. (1984) Transposase promotes double strand breaks and single strand joints at Tn10 termini in vivo. Cell 39, 181–190.

    Article  CAS  PubMed  Google Scholar 

  29. Ausubel F. M., Brent R., Kingston R. E., Moore D. E., Seidman J. G., Smith J. A., and Struhl K. (eds.) (1991) Current Protocols in Molecular Biology. Green Publishing Associates, NY.

    Google Scholar 

  30. Holden D. W., Kronstad J. W., and Leong S. A. (1989) Mutation in a heatregulated hsp70 gene of Ustilago maydis. EMBO J. 8, 1927–1934.

    CAS  PubMed  Google Scholar 

  31. Winzeler E. A., Shoemaker D. D., Astromoff A., Liang H., Anderson K., Andre B., et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 5429, 901–906.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bakshi, S., Sun, YH., Chalmers, R., Tang, C.M. (2001). Signature-Tagged Mutagenesis. In: Walker, J.M., Pollard, A.J., Maiden, M.C.J. (eds) Meningococcal Disease. Methods in Molecular Medicine™, vol 67. Humana Press. https://doi.org/10.1385/1-59259-149-3:679

Download citation

  • DOI: https://doi.org/10.1385/1-59259-149-3:679

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-849-3

  • Online ISBN: 978-1-59259-149-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics