Skip to main content

Cytokine Measurement In Vivo and In Vitro

  • Protocol
Meningococcal Disease

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 67))

  • 708 Accesses

Abstract

Cytokines play a pivotal role in both defense against meningococcal infection and the pathophysiology of invasive meningococcal disease. These chemical messengers are crucial cogwheels in the machinery of the innate immune system and are also powerful forces in the antigen-specific defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beutler B., Milsark I. W., and Cerami A. C. (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229, 869–871.

    Article  CAS  PubMed  Google Scholar 

  2. Waage A., Halstensen A., and Espevik T. (1987) Association between tumour necrosis factor in serum and fatal outcome in patients with meningococcal disease. Lancet i, 355–357.

    Article  Google Scholar 

  3. Van Deuren M., Dofferhoff A. S., and van der Meer J. W. (1992) Cytokines and the response to infection. J. Pathol. 168, 349–356.

    Article  PubMed  Google Scholar 

  4. Engelberts I., Stephens S., Francot G. J., van der Linden C. J., and Buurman W. A. (1991) Evidence for different effects of soluble TNF-receptors on various TNF measurements in human biological fluids. Lancet 338, 515–516.

    Article  CAS  PubMed  Google Scholar 

  5. Dinarello C. A. and Cannon J. G. (1993) Cytokine measurements in septic shock. Ann. Intern. Med. 119, 853–854.

    CAS  PubMed  Google Scholar 

  6. Cannon J. G., Nerad J. L., Poutsiaka D. D., and Dinarello C. A. (1993) Measuring circulating cytokines. J. Appl. Physiol. 75, 1897–1902.

    CAS  PubMed  Google Scholar 

  7. Täuber M. G. and Moser B. (1999) Cytokines and chemokines in meningeal inflammation: biology and clinical implications. Clin. Infect. Dis. 28, 1–11.

    Article  PubMed  Google Scholar 

  8. Girardin E., Grau G. E., Dayer J.-M., Roux-Lombard P., The J5 Study Group, and Lambert P. H. (1988) Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N. Engl. J. Med. 319, 397–400.

    Article  CAS  PubMed  Google Scholar 

  9. Waage A., Brandtzaeg P., Halstensen A., Kierulf P., and Espevik T. (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J. Exp. Med. 169, 333–338.

    Article  CAS  PubMed  Google Scholar 

  10. Brandtzaeg P., Kierulf P., Gaustad P., Skulberg A., Bruun J. N., Halvorsen S., and Sørensen E. (1989) Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease. J. Infect. Dis. 159, 195–204.

    CAS  PubMed  Google Scholar 

  11. Brandtzaeg P., Mollnes T. E., and Kierulf P. (1989) Complement activation and endotoxin levels in systemic meningococcal disease. J. Infect. Dis. 160, 58–65.

    CAS  PubMed  Google Scholar 

  12. Girardin E., Roux-Lombard P., Grau G. E., Suter P., Gallati H., The J5 Study Group, and Dayer J.-M. (1992) Imbalance between tumour necrosis factor-alpha and soluble TNF receptor concentrations in severe meningococcaemia. Immunology 76, 20–23.

    CAS  PubMed  Google Scholar 

  13. Van Deuren M., van der Ven-Jongekrijg J., and van der Meer J. W. M. (1992) Interleukin-8 in acute meningococcal infections; correlation with severity of disease [abstract], in Proceedings of the The 3rd International Symposium on Chemotactic Cytokines (Lindley I. J. D., Westwick J., and Kunkel S. L., eds.), Baden, Austria, p. 28.

    Google Scholar 

  14. Westendorp R. G. J., Brand A., Haanen J., van Hinsbergh V. W. M., Thompson J., van Furth R., and Meinders E. A. (1992) Leukaplasmapheresis in meningococcal septic shock. Am. J. Med. 92, 577–578.

    Article  CAS  PubMed  Google Scholar 

  15. Halstensen A., Ceska M., Brandtzaeg P., Redl H., Naess A., and Waage A. (1993) Interleukin-8 in serum and cerebrospinal fluid from patients with menin-gococcal disease. J. Infect. Dis. 167, 471–475.

    CAS  PubMed  Google Scholar 

  16. GÅrdlund B., Sjölin J., Nilsson A., Roll M., Wickerts C.-J., and Wretlind B. (1995) Plasma levels of cytokines in primary septic shock in humans: correlation with disease severity. J. Infect. Dis. 172, 296–301.

    PubMed  Google Scholar 

  17. Lehmann A. K., Halstensen A., Sørnes S., Røkke O., and Waage A. (1995) High levels of interleukin 10 in serum are associated with fatality in meningococcal disease. Infect. Immun. 63, 2109–2112.

    CAS  PubMed  Google Scholar 

  18. Van Deuren M., van der Ven Jongekrijg J., Bartelink A. K. M., van Dalen R., Sauerwein R. W., and van der Meer J. W. M. (1995) Correlation between proinflammatory cytokines and antiinflammatory mediators and the severity of disease in meningococcal infections. J. Infect. Dis. 172, 433–439.

    PubMed  Google Scholar 

  19. Kornelisse R. F., Hazelzet J. A., Savelkoul H. F. J., Hop W. C. J., Suur M. H., Borsboom A. N. J., et al. (1996) The relationship between plasminogen activator inhibitor-1 and proinflammatory and counterinflammatory mediators in children with meningococcal septic shock. J. Infect. Dis. 173, 1148–1156.

    CAS  PubMed  Google Scholar 

  20. Frieling J. T. M., van Deuren M., Wijdenes J., van Dalen R., Bartelink A. K. M., van der Linden C. J., and Sauerwein R. W. (1996) Interleukin-6 and its soluble receptor during acute meningococcal infections: effect of plasma or whole blood exchange. Crit. Care Med. 24, 1801–1805.

    Article  CAS  PubMed  Google Scholar 

  21. Arranz E., Blanco-Quiros A., Solis P., and Garotte J. A. (1997) Lack of correlation between soluble CD 14 and IL-6 in meningococcal septic shock. Pediatr. Allergy Immunol. 8, 194–199.

    Article  CAS  PubMed  Google Scholar 

  22. Westendorp R. G., Langermans J. A., Huizinga T. W., Elouali A. H., Verweij C. L., Boomsma D. I., and Vandenbroucke J. P. (1997) Genetic influence on cytokine production and fatal meningococcal disease. Lancet 349, 170–173.

    Article  CAS  PubMed  Google Scholar 

  23. Waage A. and Aasen A. O. (1992) Different role of cytokine mediators in septic shock related to meningococcal disease and surgery/polytrauma. Immunol. Rev. 127, 221–230.

    Article  CAS  PubMed  Google Scholar 

  24. Hamilton G., Hofbauer S., and Hamilton B. (1992) Endotoxin, TNF-alpha, interleukin-6 and parameters of the cellular immune system in patients with intraabdominal sepsis. Scand. J. Infect. Dis. 24, 361–368.

    Article  CAS  PubMed  Google Scholar 

  25. Rigato O., Ujvari S., Castelo A., and Salomao R. (1996) Tumor necrosis factor alpha (TNF-alpha) and sepsis: evidence for a role in host defense. Infection 24, 314–318.

    Article  CAS  PubMed  Google Scholar 

  26. Riche F., Panis Y., Laisne M. J., Briard C., Cholley B., Bernard-Poenaru O., et al. (1996) High tumor necrosis factor serum level is associated with increased survival in patients with abdominal septic shock: a prospective study in 59 patients. Surgery 120, 801–807.

    Article  CAS  PubMed  Google Scholar 

  27. Van Dissel J. T., van Langevelde P., Westendorp R. G., Kwappenberg K., and Frolich M. (1998) Anti-inflammatory cytokine profile and mortality in febrile patients. Lancet 351, 950–953.

    PubMed  Google Scholar 

  28. Gogos C. A., Drosou E., Bassaris H. P., and Skoutelis A. (2000) Proversus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis. 181, 176–180.

    Article  CAS  PubMed  Google Scholar 

  29. Echtenacher B., Falk W., Mannel D. N., and Krammer P. H. (1990) Requirement of endogenous tumor necrosis factor/cachectin for recovery from experimental peritonitis. J. Immunol. 145, 3762–3766.

    CAS  PubMed  Google Scholar 

  30. Vaudaux P., Grau G. E., Huggler E., Schumacher-Perdreau F., Fiedler F., Waldvogel F. A., and Lew D. P. (1992) Contribution of tumor necrosis factor to host defense against staphylococci in a guinea pig model of foreign body infections. J. Infect. Dis. 166, 58–64.

    CAS  PubMed  Google Scholar 

  31. McMasters K. M., Peyton J. C., Hadjiminas D. J., and Cheadle W. G. (1994) Endotoxin and tumour necrosis factor do not cause mortality from caecal ligation and puncture. Cytokine 6, 530–536.

    Article  CAS  PubMed  Google Scholar 

  32. Waage A., Halstensen A., Shalaby R., Brandtzaeg P., Kierulf P., and Espevik T. (1989) Local production of tumor necrosis factor alpha, interleukin 1, and interleukin 6 in meningococcal meningitis. Relation to the inflammatory response. J. Exp. Med. 170, 1859–1867.

    Article  CAS  PubMed  Google Scholar 

  33. Waage A., Halstensen A., Espevik T., and Brandtzaeg P. (1993) Compartmentalization of TNF and IL-6 in meningitis and septic shock. Mediators Inflamm. 2, 23–25.

    Article  CAS  PubMed  Google Scholar 

  34. Van Deuren M., van der Ven-Jongekrijg J., Vannier E., van Dalen R., Pesman G., Bartelink A. K. M., et al. The pattern of interleukin-1 β (IL-1 β) and its modulating agents IL-1 receptor antagonist and IL-1 soluble receptor type II in acute meningococcal infections. Blood 90, 1101–1108.

    Google Scholar 

  35. Brandtzaeg P., Halstensen A., Kierulf P., Espevik T., and Waage A. (1992) Molecular mechanisms in the compartmentalized inflammatory response presenting as meningococcal meningitis or septic shock. Microb. Pathog. 13, 423–431.

    Article  CAS  PubMed  Google Scholar 

  36. Brandtzaeg P., Ovstebo R., and Kierulf P. (1995) Bacteremia and compartmentalization of LPS in meningococcal disease. Prog. Clin. Biol. Res. 392, 219–233.

    CAS  PubMed  Google Scholar 

  37. Brandtzaeg P., Bryn K., Kierulf P., Øvstebø R., Namork E., Aase B., and Jantzen E. (1992) Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation, and electron microscopy. J. Clin. Invest. 89, 816–823.

    Article  CAS  PubMed  Google Scholar 

  38. Simberkoff M. S., Moldover N. H., and Rahal J. J., Jr. (1980) Absence of detectable bactericidal and opsonic activities in normal and infected human cerebrospinal fluids. A regional host defense deficiency. J. Lab. Clin. Med. 95, 362–372.

    CAS  PubMed  Google Scholar 

  39. Zwahlen A., Nydegger U. E., Vaudaux P., Lambert P. H., and Waldvogel F. A. (1982) Complement-mediated opsonic activity in normal and infected human cerebrospinal fluid: early response during bacterial meningitis. J. Infect. Dis. 145, 635–646.

    CAS  PubMed  Google Scholar 

  40. Brandtzaeg P., Øvstebø R., and Kierulf P. (1992) Compartmentalization of lipopolysaccharide production correlates with clinical presentation in meningococcal disease. J. Infect. Dis. 166, 650–652.

    CAS  PubMed  Google Scholar 

  41. Van Deuren M., Brandtzaeg P., and van der Meer J. W. M. (2000) Update on meningococcal disease with emphasis on pahogenesis and clinical management. Clin. Micr. Rev. 13, 144–166.

    Article  Google Scholar 

  42. Bingen E., Lambert-Zechovsky N., Mariani-Kurkdjian P., Doit C., Aujard Y., Fournerie F., and Mathieu H. (1990) Bacterial counts in cerebrospinal fluid of children with meningitis. Eur. J. Clin. Microbiol. Infect. Dis. 9, 278–281.

    Article  CAS  PubMed  Google Scholar 

  43. Mariani-Kurkdjian P., Doit C., Le Thomas I., Aujard Y., Bourrillon A., and Bingen E. (1999) Concentrations bacteriennes dans le liquide céphalo-rachidien au cours des méningites de l’enfant. Presse Med. 28, 1227–1230.

    CAS  PubMed  Google Scholar 

  44. Haeffner-Cavaillon N., Cavaillon J. M., Laude M., and Kazatchkine M. D. (1987) C3a(C3adesArg) induces production and release of interleukin 1 by cultured human monocytes. J. Immunol. 139, 794–799.

    CAS  PubMed  Google Scholar 

  45. Okusawa S., Yancey K. B., van der Meer J. W., Endres S., Lonnemann G., Hefter K., et al. (1988) C5a stimulates secretion of tumor necrosis factor from human mononuclear cells in vitro. Comparison with secretion of interleukin 1 beta and interleukin 1 alpha. J. Exp. Med. 168, 443–448.

    Article  CAS  PubMed  Google Scholar 

  46. Takabayashi T., Vannier E., Clark B. D., Margolis N. H., Dinarello C. A., Burke J. F., and Gelfand J. A. (1996) A new biologic role for C3a and C3a desArg: regulation of TNF-alpha and IL-1 beta synthesis. J. Immunol. 156, 3455–3460.

    CAS  PubMed  Google Scholar 

  47. Takabayashi T., Vannier E., Burke J. F., Tompkins R. G., Gelfand J. A., and Clark B. D. (1998) Both C3a and C3a(desArg) regulate interleukin-6 synthesis in human peripheral blood mononuclear cells. J. Infect. Dis. 177, 1622–1628.

    Article  CAS  PubMed  Google Scholar 

  48. Walzog B., Weinmann P., Jeblonski F., Scharffetter-Kochanek K., Bommert K., and Gaehtgens P. (1999) A role for beta(2) integrins (CD11/CD18) in the regulation of cytokine gene expression of polymorphonuclear neutrophils during the inflammatory response. FASEB J. 13, 1855–1865.

    CAS  PubMed  Google Scholar 

  49. Yamaguchi Y., Matsumura F., Liang J., Okabe K., Ohshiro H., Ishihara K., et al. (1999) Neutrophil elastase and oxygen radicals enhance monocyte chemoattractant protein-expression after ischemia/reperfusion in rat liver. Transplantation 68, 1459–1468.

    Article  CAS  PubMed  Google Scholar 

  50. Speer C. P., Rethwilm M., and Gahr M. (1987) Elastase-alpha 1-proteinase inhibitor: an early indicator of septicemia and bacterial meningitis in children. J.Pediatr. 111, 667–671.

    Article  CAS  PubMed  Google Scholar 

  51. Chan B., Kalabalikis P., Klein N., Heyderman R., and Levin M. (1996) Assessment of the effect of candidate anti-inflammatory treatments on the interaction between meningococci and inflammatory cells in vitro in a whole blood model. Biotherapy 9, 221–228.

    Article  CAS  PubMed  Google Scholar 

  52. Heyderman R. S., Ison C. A., Peakman M., Levin M., and Klein N. J. (1999) Neutrophil response to Neisseria meningitidis: inhibition of adhesion molecule expression and phagocytosis by recombinant bactericidal/permeability-increasing protein (rBPI21). J. Infect. Dis. 179, 1288–1292.

    Article  CAS  PubMed  Google Scholar 

  53. Quagliarello V. J., Wispelwey B., Long W. J., Jr., and Scheld W. M. (1991) Recombinant human interleukin-1 induces meningitis and blood-brain barrier injury in the rat. Characterization and comparison with tumor necrosis factor. J. Clin. Invest. 87, 1360–1366.

    Article  CAS  PubMed  Google Scholar 

  54. Ramilo O., Sáez-Llorens X., Mertsola J., Jafari H., Olsen K. D., Hansen E. J., et al. (1990) Tumor necrosis factor a/cachectin and interleukin lβ initiate meningeal inflammation. J. Exp. Med. 172, 497–507.

    Article  CAS  PubMed  Google Scholar 

  55. Derkx B., Marchant A., Goldman M., Bijlmer R., and van Deventer S. (1995) High levels of interleukin-10 during the initial phase of fulminant meningococcal septic shock. J. Infect. Dis. 171, 229–232.

    CAS  PubMed  Google Scholar 

  56. Van Deuren M., van der Ven-Jongekrijg J., Demacker P. N. M., Bartelink A. K. M., van Dalen R., Sauerwein R. W., et al. (1994) Differential expression of proinflammatory cytokines and their inhibitors during the course of meningococcal infections. J. Infect. Dis. 169, 157–161.

    PubMed  Google Scholar 

  57. Van Deuren M., Frieling J. T. M., van der Ven-Jongekrijg J., Neeleman C., Russel F. G. M., van Lier H. J. J., et al. (1998) Plasma patterns of tumor necrosis factor-α (TNF) and TNF soluble receptors during acute meningococcal infections and the effect of plasma exchange. Clin. Infect. Dis. 26, 918–923.

    Article  PubMed  Google Scholar 

  58. Bygbjerg I. C., Hansen M. B., Ronn A. M., Bendtzen K., and Jakobsen P. H. (1997) Decreased plasma levels of factor II + VII + X correlate with increased levels of soluble cytokine receptors in patients with malaria and meningococcal infections. APMIS 105, 150–156.

    Article  CAS  PubMed  Google Scholar 

  59. Van Deuren M. and van der Meer J. W. (1997) Extracorporal techniques to accelerate the clearance of TNF-α and IL-1 β in septic patients, in Yearbook of Intensive Care and Emergency Medicine (Vincent J. L., ed.), Springer-Verlag KG, Berlin, Germany, pp. 140–147.

    Google Scholar 

  60. Van Deuren M. (1998) Acute meningococcal disease. A study of clinical management, cytokine activation and regulation. PhD thesis, University of Nijmegen, The Netherlands.

    Google Scholar 

  61. Kornelisse R. F., Hoekman K., Visser J. J., Hop W. C. J., Huijmans J. G. M., van der Straaten P. J. C., et al. (1996) The role of nitric oxide in bacterial meningitis in children. J. Infect Dis. 174, 120–126.

    CAS  PubMed  Google Scholar 

  62. Mustafa M. M., Lebel M. H., Ramilo O., Olsen K. D., Reisch J. S., Beutler B., and McCracken G. H., Jr. (1989) Correlation of interleukin-1 beta and cachectin concentrations in cerebrospinal fluid and outcome from bacterial meningitis. J. Pediatr. 115, 208–213.

    Article  CAS  PubMed  Google Scholar 

  63. Rusconi F., Parizzi F., Garlaschi L., Assael B. M., Sironi M., Ghezzi P., and Mantovani A. (1991) Interleukin 6 activity in infants and children with bacterial meningitis. The Collaborative Study on Meningitis. Pediatr. Infect. Dis. J. 10, 117–121.

    Article  CAS  PubMed  Google Scholar 

  64. Arditi M., Manogue K. R., Caplan M., and Yogev R. (1990) Cerebrospinal fluid cachectin/tumor necrosis factor-α and platelet-activating factor concentrations and severity of bacterial meningitis in children. J. Infect. Dis. 162, 139–147.

    CAS  PubMed  Google Scholar 

  65. Roine I., Foncea L. M., Ledermann W., and Peltola H. (1995) Slow recovery of cerebrospinal fluid glucose and protein concentrations distinguish pneumococcal from Haemophilus influenzae and meningococcal meningitis in children. Pediatr. Infect. Dis. J. 14, 905–907.

    Article  CAS  PubMed  Google Scholar 

  66. Kornelisse R. F., Hack C. E., Savelkoul H. F., van der Pouw Kraan T. C., Hop W. C., vanMierlo G., et al. (1997) Intrathecal production of interleukin-12 and gamma interferon in patients with bacterial meningitis. Infect. Immun. 65, 877–881.

    CAS  PubMed  Google Scholar 

  67. Diab A., Zhu J., Lindquist L., Wretlind B., Bakhiet M., and Link H. (1997) Haemophilus influenzae and Streptococcus pneumoniae induce different intracerebral mRNA cytokine patterns during the course of experimental bacterial meningitis. Clin. Exp. Immunol. 109, 233–241.

    Article  CAS  PubMed  Google Scholar 

  68. Nadel S., Newport M. J., Booy R., and Levin M. (1996) Variation in the tumor necrosis factor-α gene promoter region may be associated with death from meningococcal disease. J. Infect. Dis. 174, 878–880.

    CAS  PubMed  Google Scholar 

  69. McGuire W., Hill A. V., Allsopp C. E., Greenwood B. M., and Kwiatkowski D. (1994) Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature 371, 508–510.

    Article  CAS  PubMed  Google Scholar 

  70. Stuber F., Petersen M., Bokelmann F., and Schade U. (1996) Agenomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit. Care Med. 24, 381–384.

    Article  CAS  PubMed  Google Scholar 

  71. Westendorp R. G. J., Langermans J. A. M., de Bel C. E., Meinders A. E., Vandenbroucke J. P., van Furth R., and van Dissel J. T. (1995) Release of tumor necrosis factor: an innate host characteristic that may contribute to the outcome of meningococcal disease. J. Infect. Dis. 171, 1057–1060.

    CAS  PubMed  Google Scholar 

  72. Bruin K. F. (1994) Endotoxin responsiveness in humans. PhD thesis, University of Amsterdam.

    Google Scholar 

  73. Van Deuren M., Netea M. G., Hijmans A., Demacker P. N. M., Neeleman C., Sauerwein R. W., et al. (1998) Posttranscriptional down-regulation of tumor necrosis factor-α and interleukin-lβ production in acute meningococcal infections. J. Infect. Dis. 177, 1401–1405.

    Article  PubMed  Google Scholar 

  74. Brandtzaeg P., Osnes L., øvstebo R., Jo G. B., Westvik Å.-B., and Kierulf P. (1996) Net inflammatory capacity of human septic shock plasma evaluated by a monocyte-based target cell assay: identification of interleukin-10 as a major functional deactivator of human monocytes. J. Exp. Med. 184, 51–60.

    Article  CAS  PubMed  Google Scholar 

  75. Marie C., Fitting C., Muret J., Payen D., and Cavaillon J. M. (2000) Interleukin 8 production in whole blood assays: Is interleukin 10 responsible for the downregulation observed in sepsis? Cytokine 12, 55–61.

    Article  CAS  PubMed  Google Scholar 

  76. Ayala A., Meldrum D. R., Perrin M. M., and Chaudry I. H. (1993) The release of transforming growth factor-beta following haemorrhage: its role as a mediator of host immunosuppression. Immunology 79, 479–484.

    CAS  PubMed  Google Scholar 

  77. Ayala A., Knotts J. B., Ertel W., Perrin M. M., Morrison M. H., and Chaudry I. H. (1993) Role of interleukin 6 and transforming growth factor-beta in the induction of depressed splenocyte responses following sepsis. Arch. Surg. 128, 89–94.

    CAS  PubMed  Google Scholar 

  78. Randow F., Syrbe U., Meisel C., Krausch D., Zuckermann H., Platzer C., and Volk H. D. (1995) Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta. J. Exp. Med. 181, 1887–1892.

    Article  CAS  PubMed  Google Scholar 

  79. Granowitz E. V., Porat R., Mier J. W., Orencole S. F., Kaplanski G., Lynch E. A., et al. (1993) Intravenous endotoxin suppresses the cytokine response of peripheral blood mononuclear cells of healthy humans. J. Immunol. 151, 1637–1645.

    CAS  PubMed  Google Scholar 

  80. Ertel W., Kremer J. P., Kenney J., Steckholzer U., Jarrar D., Trentz O., and Schildberg F. W. (1995) Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood 85, 1341–1347.

    CAS  PubMed  Google Scholar 

  81. Van Deuren M., Twickler T. B., de Waal Malefyt M. C., Van Beem H., van der Ven-Jongekrijg J., Verschueren C. M. M., and van der Meer J. W. M. (1998) Elective orthopedic surgery, a model for the study of cytokine activation and regulation. Cytokine 10, 897–903.

    Article  PubMed  Google Scholar 

  82. Frankenberger M., Pechumer H., and Ziegler-Heitbrock H. W. (1995) Interleukin-10 is upregulated in LPS tolerance. J. Inflamm. 45, 56–63.

    CAS  PubMed  Google Scholar 

  83. Döcke W. D., Randow F., Syrbe U., Krausch D., Asadullah K., Reinke P., et al. (1997) Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nature Med. 3, 678–681.

    Article  PubMed  Google Scholar 

  84. Williams M. A., Withington S., Newland A. C., and Kelsey S. M. (1998) Monocyte anergy in septic shock is associated with a predilection to apoptosis and is reversed by granulocyte-macrophage colony-stimulating factor ex vivo. J. Infect. Dis. 178, 1421–1433.

    Article  CAS  PubMed  Google Scholar 

  85. Munoz C., Carlet J., Fitting C., Misset B., Bleriot J. P., and Cavaillon J. M. (1991) Dysregulation of in vitro cytokine production by monocytes during sepsis. J. Clin. Invest. 88, 1747–1754.

    Article  CAS  PubMed  Google Scholar 

  86. Luderitz O., Tanamoto K., Galanos C., McKenzie G. R., Brade H., Zahringer U., et al. (1984) Lipopolysaccharides: structural principles and biologic activities. Rev. Infect. Dis. 6, 428–431.

    CAS  PubMed  Google Scholar 

  87. Antal-Szalmás P. (2000) Evaluation of CD14 in host defence. Eur. J. Clin. Invest. 30, 167–179.

    Article  PubMed  Google Scholar 

  88. Tobias P. S., Tapping R. I., and Gegner J. A. (1999) Endotoxin interactions with lipopolysaccharide-responsive cells. Clin. Infect. Dis. 28, 476–481.

    Article  CAS  PubMed  Google Scholar 

  89. Cavaillon J. M., Fitting C., Caroff M., and Haeffner-Cavaillon N. (1989) Dissociation of cell-associated interleukin-1 (IL-1) and IL-1 release induced by lipo-polysaccharide and lipid A. Infect. Immun. 57, 791–797.

    CAS  PubMed  Google Scholar 

  90. Otterlei M., Sundan A., Skjak-Braek G., Ryan L., Smidsrod O., and Espevik T. (1993) Similar mechanisms of action of defined polysaccharides and lipopolysaccharides: characterization of binding and tumor necrosis factor alpha induction. Infect. Immun. 61, 1917–1925.

    CAS  PubMed  Google Scholar 

  91. Gangloff S. C., Hijiya N., Haziot A., and Goyert S. M. (1999) Lipopolysaccharide structure influences the macrophage response via CD 14-independent and CD 14-dependent pathways. Clin. Infect. Dis. 28, 491–496.

    Article  CAS  PubMed  Google Scholar 

  92. Arditi M., Zhou J., Dorio R., Rong G. W., Goyert S. M., and Kim K. S. (1993) Endotoxin-mediated endothelial cell injury and activation: role of soluble CD 14. Infect. Immun. 61, 3149–3156.

    CAS  PubMed  Google Scholar 

  93. Loppnow H., Stelter F., Schonbeck U., Schluter C., Ernst M., Schutt C., and Flad H. D. (1995) Endotoxin activates human vascular smooth muscle cells despite lack of expression of CD14 mRNA or endogenous membrane CD14. Infect. Immun. 63, 1020–1026.

    CAS  PubMed  Google Scholar 

  94. Landmann R., Reber A. M., Sansano S., and Zimmerli W. (1996) Function of soluble CD 14 in serum from patients with septic shock. J. Infect. Dis. 173, 661–668.

    CAS  PubMed  Google Scholar 

  95. Landmann R., Zimmerli W., Sansano S., Link S., Hahn A., Glauser M. P., and Calandra T. (1995) Increased circulating soluble CD14 is associated with high mortality in gram-negative septic shock. J. Infect. Dis. 171, 639–644.

    CAS  PubMed  Google Scholar 

  96. Ulevitch R. J. and Tobias P. S. (1995) Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Ann. Rev. Immunol. 13, 437–457.

    Article  CAS  Google Scholar 

  97. Kirschning C. J., Wesche H., Merrill Ayres T., and Rothe M. (1998) Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 188, 2091–2097.

    Article  CAS  PubMed  Google Scholar 

  98. Modlin R. L., Brightbill H. D., and Godowski P. J. (1999) The toll of innate immunity on microbial pathogens. N. Engl. J. Med. 340, 1834–1835.

    Article  CAS  PubMed  Google Scholar 

  99. Tohme Z. N., Amar S., and Van Dyke T. E. (1999) Moesin functions as a lipopolysaccharide receptor on human monocytes. Infect. Immun. 67, 3215–3220.

    CAS  PubMed  Google Scholar 

  100. Tobias P. S., Soldau K., Gegner J. A., Mintz D., and Ulevitch R. J. (1995) Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J. Biol. Chem. 270, 10,482–10,488.

    Article  CAS  PubMed  Google Scholar 

  101. De Haas C. J., Van derZee R., Benaissa-Trouw B., Van Kessel K. P., Verhoef J., and Van Strijp J. A. (1999) Lipopolysaccharide (LPS)-binding synthetic peptides derived from serum amyloid P component neutralize LPS. Infect. Immun. 67, 2790–2796.

    PubMed  Google Scholar 

  102. Morrison D. C. and Jacobs D. M. (1976) Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13, 813–818.

    Article  CAS  PubMed  Google Scholar 

  103. Rustici A., Velucchi M., Faggioni R., Sironi M., Ghezzi P., Quataert S., Green B., and Porro M. (1993) Molecular mapping and detoxification of the lipid A binding site by synthetic peptides. Science 259, 361–365.

    Article  CAS  PubMed  Google Scholar 

  104. Appelmelk B. J., An Y. Q., Geerts M., Thijs B. G., de Boer H. A., MacLaren D. M., et al. (1994) Lactoferrin is a lipid A-binding protein. Infect. Immun. 62, 2628–2632.

    CAS  PubMed  Google Scholar 

  105. Weiss J., Elsbach P., Shu C., Castillo J., Grinna L., Horwitz A., and Theofan G. (1992) Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria. J. Clin. Invest. 90, 1122–1130.

    Article  CAS  PubMed  Google Scholar 

  106. Heinzelmann M., Polk H. C., Jr., and Miller F. N. (1998) Modulation of lipo-polysaccharide-induced monocyte activation by heparin-binding protein and fucoidan. Infect. Immun. 66, 5842–5847.

    CAS  PubMed  Google Scholar 

  107. Porro M. (1994) Structural basis of endotoxin recognition by natural polypeptides. Trends Microbiol. 2, 65–66.

    Article  CAS  PubMed  Google Scholar 

  108. Cavaillon J. M., Fitting C., Haeffner Cavaillon N., Kirsch S. J., and Warren H. S. (1990) Cytokine response by monocytes and macrophages to free and liporotein-bound lipopolysaccharide. Infect. Immun. 58, 2375–2382.

    CAS  PubMed  Google Scholar 

  109. Iwagaki A., Porro M., and Pollack M. (2000) Influence of synthetic antiendotoxin peptides on lipopolysaccharide (LPS) recognition and LPS-induced proinflammatory cytokine responses by cells expressing membrane-bound CD 14. Infect. Immun. 68, 1655–1663.

    Article  CAS  PubMed  Google Scholar 

  110. Hailman E., Lichenstein H. S., Wurfel M. M., Miller D. S., Johnson D. A., Kelley M., et al. (1994) Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J. Exp. Med. 179, 269–277.

    Article  CAS  PubMed  Google Scholar 

  111. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., et al. (1990) Structure and function of lipopolysaccharide binding protein. Science 249, 1429–1431.

    Article  CAS  PubMed  Google Scholar 

  112. Opal S. M., Palardy J. E., Marra M. N., Fisher C. J., Jr., McKelligon B. M., and Scott R. W. (1994) Relative concentrations of endotoxin-binding proteins in body fluids during infection. Lancet 344, 429–431.

    Article  CAS  PubMed  Google Scholar 

  113. Froon A. H., Dentener M. A., Greve J. W., Ramsay G., and Buurman W. A. (1995) Lipopolysaccharide toxicity-regulating proteins in bacteremia. J. Infect. Dis. 171, 1250–1257.

    CAS  PubMed  Google Scholar 

  114. Opal S. M., Scannon P. J., Vincent J. L., White M., Carroll S. F., Palardy J. E., et al. (1999) Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J. Infect. Dis. 180, 1584–1589.

    Article  CAS  PubMed  Google Scholar 

  115. Henter J. I., Carlson L. A., Hansson M., Nilsson-Ehle P., and Ortqvist E. (1993) Lipoprotein alterations in children with bacterial meningitis. Acta Paediatr. 82, 694–698.

    CAS  PubMed  Google Scholar 

  116. Keuter M., Dharmana E., Gasem M. H., van der Ven Jongekrijg J., Djokomoeljanto R., Dolmans W. M., et al. (1994) Patterns of proinflammatory cytokines and inhibitors during typhoid fever. J. Infect. Dis. 169, 1306–1311.

    CAS  PubMed  Google Scholar 

  117. Haeffner-Cavaillon N., Cavaillon J. M., Etievant M., Lebbar S., and Szabo L. (1985) Specific binding of endotoxin to human monocytes and mouse macrophages: serum requirement. Cell. Immunol. 91, 119–131.

    Article  CAS  PubMed  Google Scholar 

  118. Lebbar S., Cavaillon J. M., Caroff M., Ledur A., Brade H., Sarfati R., and Haeffner-Cavaillon N. (1986) Molecular requirement for interleukin 1 induction by lipopolysaccharide-stimulated human monocytes: involvement of the heptosyl-2-keto-3-deoxyoctulosonate region. Eur. J. Immunol. 16, 87–91.

    Article  CAS  PubMed  Google Scholar 

  119. Haeffner-Cavaillon N. and Cavaillon J. M. (1987) Involvement of theLPS receptor in the induction of interleukin-1 in human monocytes stimulated with endotoxins. Ann. Inst. Pasteur Immunol. 138, 473–477.

    Article  CAS  PubMed  Google Scholar 

  120. Haeffner-Cavaillon N., Caroff M., and Cavaillon J. M. (1989) Interleukin-1 induction by lipopolysaccharides: structural requirements of the 3-deoxy-D-manno-2-octulosonic acid (KDO). Mol. Immunol. 26, 485–494.

    Article  CAS  PubMed  Google Scholar 

  121. Laude-Sharp M., Haeffner-Cavaillon N., Caroff M., Lantreibecq F., Pusineri C., and Kazatchkine M. D. (1990) Dissociation between the interleukin 1-inducing capacity and Limulus reactivity of lipopolysaccharides from gram-negative bacteria. Cytokine 2, 253–258.

    Article  CAS  PubMed  Google Scholar 

  122. Couturier C., Haeffner-Cavaillon N., Caroff M., and Kazatchkine M. D. (1991) Binding sites for endotoxins (lipopolysaccharides) on human monocytes. J. Immunol. 147, 1899–1904.

    CAS  PubMed  Google Scholar 

  123. Boutten A., Dehoux M., Deschenes M., Rouzeau J. D., Bories P. N., and Durand G. (1992) Alpha 1-acid glycoprotein potentiates lipopolysaccharideinduced secretion of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha by human monocytes and alveolar and peritoneal macrophages. Eur. J. Immunol. 22, 2687–2695.

    Article  CAS  PubMed  Google Scholar 

  124. Muller-Alouf H., Alouf J. E., Gerlach D., Ozegowski J. H., Fitting C., and Cavaillon J. M. (1994) Comparative study of cytokine release by human peripheral blood mononuclear cells stimulated with Streptococcus pyogenes superantigenic erythrogenic toxins, heat-killed streptococci, and lipopolysaccharide. Infect. Immun. 62, 4915–4921.

    CAS  PubMed  Google Scholar 

  125. Blondiau C., Lagadec P., Lejeune P., Onier N., Cavaillon J. M., and Jeannin J. F. (1994) Correlation between the capacity to activate macrophages in vitro and the antitumor activity in vivo of lipopolysaccharides from different bacterial species. Immunobiology 190, 243–254.

    CAS  PubMed  Google Scholar 

  126. Blondin C., Le Dur A., Cholley B., Caroff M., and Haeffner-Cavaillon N. (1997) Lipopolysaccharide complexed with soluble CD 14 binds to normal human monocytes. Eur. J. Immunol. 27, 3303–3309.

    Article  CAS  PubMed  Google Scholar 

  127. Prins J. M., Lauw F. N., Derkx B. H. F., Speelman P., Kuijper E. J., Dankert J., and van Deventer S. J. H. (1998) Endotoxin release and cytokine production in acute and chronic meningococcaemia. Clin. Exp. Immunol. 114, 215–219.

    Article  CAS  PubMed  Google Scholar 

  128. Luchi M. and Morrison D. C. (2000) Comparable endotoxic properties of lipo-polysaccharides are manifest in diverse clinical isolates of gram-negative bacteria. Infect. Immun. 68, 1899–1904.

    Article  CAS  PubMed  Google Scholar 

  129. Westphal O. and Jann J. K. (1965) Bacterial lipopolysacharide extraction with phenol-water and further application of the procedure. Methods Carbohydr. Chem. 5, 83–91.

    CAS  Google Scholar 

  130. Weissbach A. and Hurwitz B. (1959) The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. J. Biol. Chem. 234, 705–709.

    CAS  PubMed  Google Scholar 

  131. Van der Ley P., Kramer M., Martin A., Richards J. C., and Poolman J. T. (1997) Analysis of the icsBA locus required for biosynthesis of the inner core region from Neisseria meningitidis lipopolysaccharide. FEMS Microbiol. Lett. 146, 247–253.

    Article  PubMed  Google Scholar 

  132. Cavaillon J. M., and Haeffner-Cavaillon N. (1986) Polymyxin-B inhibition of LPS-induced interleukin-1 secretion by human monocytes is dependent upon the LPS origin. Mol. Immunol. 23, 965–969.

    Article  CAS  PubMed  Google Scholar 

  133. Baldwin G., Alpert G., Caputo G. L., Baskin M., Parsonnet J., Gillis Z. A., et al. (1991) Effect of polymyxin B on experimental shock from meningococcal and Escherichia coli endotoxins. J. Infect. Dis. 164, 542–549.

    CAS  PubMed  Google Scholar 

  134. Steeghs L., Jennings M. P., Poolman J. T., and van der Ley P. (1997) Isolation and characterization of the Neisseria meningitidis lpxD-fabZ-lpxA gene cluster involved in lipid A biosynthesis. Gene 190, 263–270.

    Article  CAS  PubMed  Google Scholar 

  135. Odegaard T. J., Kaltashov I. A., Cotter R. J., Steeghs L., van der Ley P., Khan S., et al. (1997) Shortened hydroxyacyl chains on lipid A of Escherichia coli cells expressing a foreign UDP-N-acetylglucosamine O-acyltransferase. J. Biol. Chem. 272, 19,688–19,696.

    Article  CAS  PubMed  Google Scholar 

  136. Henderson B., Poole S., and Wilson M. (1996) Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol. Rev. 60, 316–341.

    CAS  PubMed  Google Scholar 

  137. Kreutz M., Ackermann U., Hauschildt S., Krause S. W., Riedel D., Bessler W., and Andreesen R. (1997) A comparative analysis of cytokine production and tolerance induction by bacterial lipopeptides, lipopolysaccharides and Staphylococcus aureus in human monocytes. Immunology 92, 396–401.

    Article  CAS  PubMed  Google Scholar 

  138. Bhakdi S., Klonisch T., Nuber P., and Fischer W. (1991) Stimulation of monokine production by lipoteichoic acids. Infect. Immun. 59, 4614–4620.

    CAS  PubMed  Google Scholar 

  139. Soell M., Diab M., Haan-Archipoff G., Beretz A., Herbelin C., Poutrel B., and Klein J. P. (1995) Capsular polysaccharide types 5 and 8 of Staphylococcus aureus bind specifically to human epithelial (KB) cells, endothelial cells, and monocytes and induce release of cytokines. Infect. Immun. 63, 1380–1386.

    CAS  PubMed  Google Scholar 

  140. Schrijver I. A., Melief M. J., Eulderink F., Hazenberg M. P., and Laman J. D. (1999) Bacterial peptidoglycan polysaccharides in sterile human spleen induce proinflammatory cytokine production by human blood cells. J. Infect. Dis. 179, 1459–1468.

    Article  CAS  PubMed  Google Scholar 

  141. Kengatharan K. M., De Kimpe S., Robson C., Foster S. J., and Thiemermann C. (1998) Mechanism of gram-positive shock: identification of pepti-doglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. J. Exp. Med. 188, 305–315.

    Article  CAS  PubMed  Google Scholar 

  142. Mattsson E., Rollof J., Verhoef J., Van Dijk H., and Fleer A. (1994) Serum-induced potentiation of tumor necrosis factor alpha production by human monocytes in response to staphylococcal peptidoglycan: involvement of different serum factors. Infect. Immun. 62, 3837–3843.

    CAS  PubMed  Google Scholar 

  143. Ayala P., Lin L., Hopper S., Fukuda M., and So M. (1998) Infection of epithelial cells by pathogenic neisseriae reduces the levels of multiple lysosomal constituents. Infect. Immun. 66, 5001–5007.

    CAS  PubMed  Google Scholar 

  144. Lin L., Ayala P., Larson J., Mulks M., Fukuda M., Carlsson S. R., Enns C., and So M. (1997) The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells. Mol. Microbiol. 24, 1083–1094.

    Article  CAS  PubMed  Google Scholar 

  145. Vitovski S., Read R. C., and Sayers J. R. (1999) Invasive isolates of Neisseria meningitidis possess enhanced immunoglobulin A1 protease activity compared to colonizing strains. FASEB J. 13, 331–337.

    CAS  PubMed  Google Scholar 

  146. Lorenzen D. R., Dux F., Wolk U., Tsirpouchtsidis A., Haas G., and Meyer T. F. (1999) Immunoglobulin A1 protease, an exoenzyme of pathogenic Neisseriae, is a potent inducer of proinflammatory cytokines. J. Exp. Med. 190, 1049–1058.

    Article  CAS  PubMed  Google Scholar 

  147. Dunn K. L., Virji M., and Moxon E. R. (1995) Investigations into the molecular basis of meningococcal toxicity for human endothelial and epithelial cells: the synergistic effect of LPS and pili. Microb. Pathog. 18, 81–96.

    Article  CAS  PubMed  Google Scholar 

  148. Klein N. J., Ison C. A., Peakman M., Levin M., Hammerschmidt S., Frosch M., and Heyderman R. S. (1996) The influence of capsulation and lipooligosaccharide structure on neutrophil adhesion molecule expression and endothelial injury by Neisseria meningitidis. J. Infect. Dis. 173, 172–179.

    CAS  PubMed  Google Scholar 

  149. Dixon G. L., Heyderman R. S., Kotovicz K., Jack D. L., Andersen S. R., Vogel U., et al. (1999) Endothelial adhesion molecule expression and its inhibition by recombinant bactericidal/permeability-increasing protein are influenced by the capsulation and lipooligosaccharide structure of Neisseria meningitidis. Infect. Immun. 67, 5626–5633.

    CAS  PubMed  Google Scholar 

  150. Heyderman R. S., Klein N. J., Shennan G. I., and Levin M. (1991) Deficiency of prostacyclin production in meningococcal shock. Arch. Dis. Child. 66, 1296–1299.

    Article  CAS  PubMed  Google Scholar 

  151. Steeghs L., den Hartog R., den Boer A., Zomer B., Roholl P., and van der Ley P. (1998) Meningitis bacterium is viable without endotoxin. Nature 392, 449–450.

    Article  CAS  PubMed  Google Scholar 

  152. Uronen H., Williams A. J., Dixon G., Anderson S. R., van der Ley P., van Deuren, et al. (2000) Gram-negative bacteria induce pro-inflammatory cytokine production by monocytes in the absence of lipopolysaccharide (LPS). Clinical Exp. Immunol. 122, 312–315.

    Article  CAS  Google Scholar 

  153. Sprong T., Stikkelbroeck N., van der Ley P., Steeghs L., van Alphen L., Klein N., et al. (2001) Cytokine induction by N. meningitidis LPS and non-LPS. J. Leukocyte Biol., in press.

    Google Scholar 

  154. Meyer T. F. (1999) Pathogenic neisseriae: complexity of pathogen-host cell interplay. Clin. Infect. Dis. 28, 433–441.

    Article  CAS  PubMed  Google Scholar 

  155. Kallstrom H., Liszewski M. K., Atkinson J. P., and Jonsson A. B. (1997) Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol. Microbiol. 25, 639–647.

    Article  CAS  PubMed  Google Scholar 

  156. Virji M., Watt S. M., Barker S., Makepeace K., Doyonnas R. (1996) The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae. Mol. Microbiol. 22, 929–939.

    Article  CAS  PubMed  Google Scholar 

  157. Kallstrom H., Islam M. S., Berggren P. O., and Jonsson A. B. (1998) Cell signaling by the type IV pili of pathogenic Neisseria. J. Biol. Chem. 273, 21,777–21,782.

    Article  CAS  PubMed  Google Scholar 

  158. Naumann M., Wessler S., Bartsch C., Wieland B., and Meyer T. F. (1997) Neisseria gonorrhoeae epithelial cell interaction leads to the activation of the transcription factors nuclear factor kappaB and activator protein 1 and the induction of inflammatory cytokines. J. Exp. Med. 186, 247–258.

    Article  CAS  PubMed  Google Scholar 

  159. Hopper S., Vasquez B., Merz A., Clary S., Wilbur J. S., and So M. (2000) Effects of the immunoglobulin A1 protease on Neisseria gonorrhoeae trafficking across polarized T84 epithelial monolayers. Infect. Immun. 68, 906–911.

    Article  CAS  PubMed  Google Scholar 

  160. Munoz C., Misset B., Fitting C., Bleriot J. P., Carlet J., and Cavaillon J. M. (1991) Dissociation between plasma and monocyte-associated cytokines during sepsis. Eur. J. Immunol. 21, 2177–2184.

    Article  CAS  PubMed  Google Scholar 

  161. Björk L., Fehniger T. E., Andersson U., Andersson J. (1996) Computerized assessment of production of multiple human cytokines at the single-cell level using image analysis. J. Leukoc. Biol. 59, 287–295.

    PubMed  Google Scholar 

  162. Tayebi H., Lienard A., Billot M., Tiberghien P., Herve P., and Robinet E. (1999) Detection of intracellular cytokines in citrated whole blood or marrow samples by flow cytometry. J. Immunol. Methods 229, 121–130.

    Article  CAS  PubMed  Google Scholar 

  163. Netea M. G., Drenth J. P., De Bont N., Hijmans A., Keuter M., Dharmana E., et al. (1996) A semi-quantitative reverse transcriptase polymerase chain reaction method for measurement of MRNA for TNF-alpha and IL-1 beta in whole blood cultures: its application in typhoid fever and exentric exercise. Cytokine 8, 739–744.

    Article  CAS  PubMed  Google Scholar 

  164. Van Deuren M., Santman F. W., van Dalen R., Sauerwein R. W., Span L. F., and van der Meer J. W. (1992) Plasma and whole blood exchange in meningococcal sepsis. Clin. Infect. Dis. 15, 424–430.

    PubMed  Google Scholar 

  165. Pavliak V., Brisson J. R., Michon F., Uhrin D., Jennings H. J. (1993) Struc ture of the sialylated L3 lipopolysaccharide of Neisseria meningitidis. J. Biol. Chem. 268, 14,146–14,152.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

van Deuren, M., Brandtzaeg, P. (2001). Cytokine Measurement In Vivo and In Vitro. In: Walker, J.M., Pollard, A.J., Maiden, M.C.J. (eds) Meningococcal Disease. Methods in Molecular Medicine™, vol 67. Humana Press. https://doi.org/10.1385/1-59259-149-3:459

Download citation

  • DOI: https://doi.org/10.1385/1-59259-149-3:459

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-849-3

  • Online ISBN: 978-1-59259-149-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics