Skip to main content

Nucleotide Sequencing of Antigen Genes of Neisseria meningitidis

  • Protocol
Meningococcal Disease

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 67))

Abstract

The cell-surface structures of Neisseria meningitidis play a critical role in the interaction of the bacterium with the human host both as variable antigens that evade immune eradication and by promoting colonization of and adherence to epithelial cells in the nasopharynx. Surface molecules are also implicated in the patho- genicity of some meningococci by facilitating invasion of host cells, survival in the bloodstream, and resistance to phagocytosis. The antigenic diversity among cell- surface components has also been exploited for the development of classification schemes for N. meningitidis, which have in turn been used for epidemiological monitoring of meningococcal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eldridge J., Sutcliffe E. M., Abbott J. D., and Jones D.M. (1978) Serological grouping of meningococci and detection of antigen in cerebrospinal fluid by coagglutination. Med. Lab. Sci. 35, 63ā€“66.

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Davis D. M., Dulbecco R., Eisen H. N., and Ginsberg H. S. (1980) The Neisseriae, in Microbiology (Gotschlich E. C., ed.), Harper, New York, NY, pp. 635ā€“644.

    Google ScholarĀ 

  3. Goldschneider I., Gotschlich E. C., and Artenstein M. S. (1969) Human Immunity to the Meningococcus. II. Development of Natural Immunity. J. Exp. Med. 129, 1327ā€“1348.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Jennings H. J. and Lugowski C. (1981) Immunochemistry of groups A, B, and C meningococcal polysaccharide-tetanus toxoid conjugates. J. Immunol. 127, 1011ā€“1018.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Costantino P., Viti S., Podda A., Velmonte M. A., Nencioni L., and Rappuoli R. (1992) Development and phase 1 clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 10, 691ā€“698.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Richmond P., Goldblatt D., Fusco P. C., Fusco J. D., Heron I., Clark S., Borrow R., and Michon F. (1999) Safety and immunogenicity of a new Neisseria meningitidis serogroup C-tetanus toxoid conjugate vaccine in healthy adults. Vaccine 18,641ā€“646.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Campagne G., Garba A., Fabre P., Schuchat A., Ryall R., Boulanger D., et al. (2000) Safety and immunogenicity of three doses of a Neisseria meningitidis A + C diphtheria conjugate vaccine in infants from Niger. Pediatr. Infect. Dis. J. 19, 144ā€“150.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Frosch M., Weisgerber C., and Meyer T. F. (1989) Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. Proc. Natl. Acad. Sci. USA 86, 1669ā€“1673.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Edwards U., Muller A., Hammerschmidt S., Gerardy-Schahn R., and Frosch M. (1994) Molecular analysis of the biosynthesis pathway of the alpha-2,8 polysialic acid capsule by Neisseria meningitidis serogroup B. Mol. Microbiol. 14, 141ā€“149.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Swartley J. S., Marfin A. A., Edupuganti S., Liu L. J., Cieslak P., Perkins B., et al. (1997) Capsule switching of Neisseria meningitidis. Proc. Natl. Acad. Sci. USA 94, 271ā€“276.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Maiden M. C. J. and Spratt B. G. (1999) Meningococcal conjugate vaccines: new opportunities and new challenges. Lancet 354,615ā€“616.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Stephens D. S., Spellman P. A., and Swartley J. S. (1993) Effect of the (alpha 2ā†’8)-linked polysialic acid capsule on adherence of Neisseria meningitidis to human mucosal cells. J. Infect. Dis. 167,475ā€“479.

    CASĀ  PubMedĀ  Google ScholarĀ 

  13. Hammerschmidt S., Muller A., Sillmann H., Muhlenhoff M., Borrow R., Fox A., et al. (1996) Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease. Mol. Microbiol. 20, 1211-1120.

    Google ScholarĀ 

  14. Hammerschmidt S., Hilse R., van Putten J. P., Gerardy-Schahn R., Unkmeir A., and Frosch M. (1996) Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element. EMBO J 15, 192ā€“198.

    CASĀ  PubMedĀ  Google ScholarĀ 

  15. Heckels J. E. (1989) Structure and function of pili of pathogenic Neisseria species. Clin. Microbiol. Rev. 2S, S66ā€“S73.

    Google ScholarĀ 

  16. Virji M., Saunders J. R., Sims G., Makepeace K., Maskell D., and Ferguson D. J. P. (1993) Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurrs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin.Mol. Microbiol. 10, 1013ā€“1028.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Virji M., Kayhty H., Ferguson D. J., Alexandrescu C., Heckels J. E., and Moxon E. R. (1991) The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol. Microbiol. 5, 1831ā€“1841.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. McLeod Griffiss J. (1995) Mechanisms of host immunity, in Meningococcal Disease (Cartwright K. A. V., ed.), John Wiley and Sons, Chichester, UK, pp. 35ā€“70.

    Google ScholarĀ 

  19. Poolman J. T., van der Ley P. A., and Tommassen J. (1995) Surface structures and secreted products of meningococci, in Meningococcal Disease (Cartwright K. A. V., ed.), John Wiley and Sons, Chichester, UK, pp. 21ā€“34.

    Google ScholarĀ 

  20. Hart C. A. and Rogers T. R. F. (1993) Meningococcal disease. J. Med. Microbiol. 39, 3ā€“25.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Virji M., Alexandrescu C., Ferguson D.J., Saunders J.R., and Moxon E.R. (1992) Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol. Microbiol. 6,1271ā€“1279.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Nassif X., Lowy J., Stenberg P., Oā€™Gaora P., Ganji A., and So M. (1993) Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol. Microbiol. 8, 719ā€“725.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. de Vries F. P., van der Ende A., van Putten J. P., and Dankert J. (1996) Invasion of primary nasopharyngeal epithelial cells by Neisseria meningitidis is controlled by phase variation of multiple surface antigens. Infect. Immun. 64,2998ā€“3006.

    PubMedĀ  Google ScholarĀ 

  24. Legrain M., Mazarin V., Irwin S. W., Bouchon B., Quentin Millet M. J., Jacobs E., and Schryvers A. B. (1993) Cloning and characterization of Neisseria meningitidis genes encoding the transferrin-binding proteins Tbp1 and Tbp2. Gene 130, 73ā€“80.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Cornelissen C. N., Kelley M., Hobbs M. M., Anderson J. E., Cannon J. G., Cohen M. S., and Sparling P. F. (1998) The transferrin receptor expressed by gonococcal strain FA 1090 is required for the experimental infection of human male volunteers. Mol. Microbiol. 27,611ā€“616.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Lissolo L., Maitre Wilmotte G., Dumas P., Mignon M., Danve B., and Quentin Millet M. J. (1995) Evaluation of transferrin-binding protein 2 within the transferrin-binding protein complex as a potential antigen for future meningococcal vaccines. Infect. Immun. 63, 884ā€“890.

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Schryvers A. B. and Stojiljkovic I. (1999) Iron acquisition systems in the pathogenic Neisseria. Mol. Microbiol. 32,1117ā€“1123.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Dyer D. W., West E. P., McKenna W., Thompson S. A., and Sparling P. F. (1988) A pleiotropic iron-uptake mutant of Neisseria meningitidis lacks a 70-kilodalton iron-regulated protein. Infect. Immun. 56,977ā€“983.

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Carson S. D. B., Klebba P. E., Newton S. M. C., and Sparling P. F. (1999) Ferric enterobactin binding and utilisation by Neisseria gonorrhoeae. J. Bacteriol. 181,2895ā€“2901.

    CASĀ  PubMedĀ  Google ScholarĀ 

  30. Thulasiraman P., Newton S. M. C., Xu J., Raymond K. N., Mai C., Hall A., et al. (1998) Selectivity of ferric enterobactin binding and cooperativity of transport in Gram-negative bacteria. J. Bacteriol. 180, 6689ā€“6696.

    CASĀ  PubMedĀ  Google ScholarĀ 

  31. Pettersson A., Maas A., van Wassenaar D., van der Ley P., and Tommassen J. (1995) Molecular characterization of FrpB, the 70-kilodalton iron-regulated outer membrane protein of Neisseria meningitidis. Infect. Immun. 63,4181ā€“4184.

    CASĀ  PubMedĀ  Google ScholarĀ 

  32. van der Ley P., van der Biezen J., Sutmuller R., Hoogerhout P., and Poolman J. T. (1996) Sequence variability of FrpB, a major iron-regulated outer-membrane protein in the pathogenic neisseriae. Microbiology 142, 3269ā€“3274.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  33. Tsai C.-M., Frasch C. E., and Mocca L. F. (1981) Five structural classes of major outer membrane proteins in Neisseria meningitidis. J. Bacteriol. 146,69ā€“78.

    CASĀ  PubMedĀ  Google ScholarĀ 

  34. Barlow A. K., Heckels J. E., and Clarke I. N. (1989) The class 1 outer membrane protein of Neisseria meningitidis: gene sequence and structural and immunological similarities to gonococcal porins. Mol. Microbiol. 3, 131ā€“139.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Virji M. (1996) Meningococcal disease: epidemiology and pathogenesis. Trends Microbiol. 4,466ā€“469.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Virji M., Makepeace K., Ferguson D. J., Achtman M., and Moxon E. R. (1993) Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol. Microbiol. 10,499ā€“510.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Virji M., Makepeace K., Ferguson D. J. P., Achtman M., Sarkari J., and Moxon E. R. (1992) Expression of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitidis. Mol. Microbiol. 6, 2785ā€“2795.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. van der Ley P., Heckels J. E., Virji M., Hoogerhout P., and Poolman J. T. (1991) Topology of outer membrane porins in pathogenic Neisseria spp. Infect. Immun. 59,2963ā€“2971.

    PubMedĀ  Google ScholarĀ 

  39. Sarkari J., Pandit N., Moxon E. R., and Achtman M. (1994) Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promotor containing poly-cytidine. Mol. Microbiol. 13,207ā€“217.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Hitchcock P. J. (1989) Unified nomenclature for pathogenic Neisseria species. Clin. Microbiol. Rev. 2, S64ā€“S65.

    PubMedĀ  Google ScholarĀ 

  41. van der Ende A., Hopman C. T. P., Zaat S., Oude Essink B. B., Berkhout B., and Dankert J. (1995) Variable expression of class 1 outer membrane protein in Neisseria meningitidis is caused by variation in the spacing between the-10 and-35 regions of the promoter. J. Bacteriol. 177, 2475ā€“2480.

    PubMedĀ  Google ScholarĀ 

  42. Derrick J. P., Urwin R., Suker J., Feavers I. M., and Maiden M. C. J. (1999) Structural and evolutionary inference from molecular variation in Neisseria porins. Infect. Immun. 67,2406ā€“2413.

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Frasch C. E., Zollinger W. D., and Poolman J. T. (1985) Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev. Infect. Dis. 7, 504ā€“510.

    CASĀ  PubMedĀ  Google ScholarĀ 

  44. Saukkonen K., Leinonen M., Abdillahi H., and Poolman J.T. (1989) Comparative evaluation of potential components for group B meningococcal vaccine by passive protection in the infant rat and in vitro bactericidal assay. Vaccine 7, 325ā€“328.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Maiden M. C. J., Suker J., McKenna A. J., Bygraves J. A., and Feavers I. M. (1991) Comparison of the class 1 outer membrane proteins of eight serological reference strains of Neisseria meningitidis. Mol. Microbiol. 5, 727ā€“736.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Bash M. C., Lesiak K. B., Banks S. D., and Frasch C. E. (1995) Analysis of Neisseria meningitidis class 3 outer membrane protein gene variable regions and type identification using genetic techniques. Infect. Immun. 63,1484ā€“1490.

    CASĀ  PubMedĀ  Google ScholarĀ 

  47. Smith N. H., Maynard Smith J., and Spratt B. G. (1995) Sequence evolution of the porB gene of Neisseria gonorrhoeae and Neisseria meningitidis: evidence of positive Darwinian selection. Mol. Biol. Evol. 12, 363ā€“370.

    CASĀ  PubMedĀ  Google ScholarĀ 

  48. Urwin R. (1998) PhD Thesis: Variation in Meningococcal PorB Proteins. University of Staffordshire, Stoke-on-Trent, UK.

    Google ScholarĀ 

  49. Suker J., Feavers I. M., and Maiden M. C. J. (1996) Monoclonal antibody recognition of members of the P1. 10 variable region family: implications for serological typing and vaccine design. Microbiology 142,63ā€“69.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Urwin R., Fox A. J., Musilek M., Kriz P., and Maiden M. C. J. (1998) Heterogeneity of the PorB protein in serotype 22 Neisseria meningitidis. J. Clin. Microbiol. 36, 3680ā€“3682.

    CASĀ  PubMedĀ  Google ScholarĀ 

  51. Urwin R., Feavers I. M., Jones D. M., Maiden M. C. J., and Fox A. J. (1998) Molecular variation of meningococcal serotype 4 antigen genes. Epidemiol. Infect. 121,95ā€“101.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Bygraves J. A., Urwin R., Fox A. J., Gray S. J., Russell J. E., Feavers I. M., and Maiden M. C. J. (1999) Population genetic and evolutionary approaches to the analysis of Neisseria meningitidis isolates belonging to the ET-5 complex. J. Bacteriol. 181, 5551ā€“5556.

    CASĀ  PubMedĀ  Google ScholarĀ 

  53. Embley T. M. (1991) The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett. Appl. Microbiol. 13,171ā€“174.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Sanger F., Nicklen S., and Coulson A. R. (1977) DNA sequencing with chainterminating inhibitors. Proc. Nat. Acad. Sci. USA 74,5463ā€“5467.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Staden R. (1996) The Staden sequence analysis package. Mol. Biotechnol. 5, 233ā€“241.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Urwin, R. (2001). Nucleotide Sequencing of Antigen Genes of Neisseria meningitidis . In: Walker, J.M., Pollard, A.J., Maiden, M.C.J. (eds) Meningococcal Disease. Methods in Molecular Medicineā„¢, vol 67. Humana Press. https://doi.org/10.1385/1-59259-149-3:157

Download citation

  • DOI: https://doi.org/10.1385/1-59259-149-3:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-849-3

  • Online ISBN: 978-1-59259-149-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics