Skip to main content

CD4 T-Cell Epitope Mapping

  • Protocol
Meningococcal Vaccines

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 66))

Abstract

The majority of T cells recognize peptide epitopes bound to major histocompatibility complex (MHC)-encoded glycoproteins on the surface of professional antigen-presenting cells (APC), principally dendritic cells, macrophages, and B cells (13). Most T cells are specific for peptide epitopes in association with either classical MHC class Ia molecules (HLA-A, B, and C in humans and H2-K, D, and L in mice) in the case of CD8+ T cells, or class II molecules (HLA-DR, DP, and DQ in humans and H2-A and E in mice) for CD4+ T cells. However, a significant proportion of T cells recognize peptide antigens bound to nonclassical MHC class Ib molecules such as the human HLA-E (mouse analog Qa1) (4) and mouse H2-M3 (5). In addition, some T cells recognize not peptides but lipid or glycolipid antigens bound to nonclassical MHC class Ib molecules such as CD1 in both humans and mice (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Germain, R. N. (1999) Antigen processing and presentation, in Fundamental Immunology, 4th ed. (Paul, W. E., ed.), Lippincott-Raven, Philadelphia, 287–340.

    Google Scholar 

  2. Harding, C. V. (1997) MHC Molecules and Antigen Processing. Springer-Verlag, Heidelberg.

    Google Scholar 

  3. Watts, C. (1997) Capture and processing of exogenous antigens for presentation on MHC molecules. Annu. Rev. Immunol. 15, 821–850.

    Article  CAS  PubMed  Google Scholar 

  4. Seaman, M. S., Perarnau, B., Lindahl, K. F., Lemonnier, F. A., and Forman, J. (1999) Response to Listeria monocytogenes in mice lacking MHC class Ia molecules. J. Immunol. 162, 5429–5436.

    CAS  PubMed  Google Scholar 

  5. Fischer-Lindahl, K., Byers, D. E., and Dabni, V. B. (1997) H2-M3, a full-service class Ib histocompatibility antigen. Annu. Rev. Immunol. 15, 851–879.

    Article  Google Scholar 

  6. Moody, D. B., Besra, G. S., Wilson, I. A., and Porcelli, S. A. (1999) The molecular basis of CD1-mediated presentation of lipid antigens. Immunol. Rev. 172, 285–296.

    Article  CAS  PubMed  Google Scholar 

  7. Parham, P. E. (1999) Pathways of antigen processing and presentation. Immunol. Rev. 172, 1–343.

    Google Scholar 

  8. Pinet, V. and Long, E. O. (1998) Peptide loading onto recycling HLA-DR molecules occurs in early endosomes. Eur. J. Immunol. 28, 799–804.

    Article  CAS  PubMed  Google Scholar 

  9. Delvig, A. A. and Robinson, J. H. (1998) Two T cell epitopes from the M5 protein of viable Streptococcus pyogenes engage different pathways of bacterial antigen processing. J. Immunol. 160, 5267–5272.

    CAS  PubMed  Google Scholar 

  10. Zhong, G., Romagnoli, P., and Germain, R. N. (1997) Related leucine-based cytoplasmic targeting signals in invariant chain and Major Histocompatibility Complex class II molecules control endocytic presentation of distinct determinants in a single protein. J. Exp. Med. 185, 429–438.

    Article  CAS  PubMed  Google Scholar 

  11. Ben-Yedidia, T. and Arnon, R. (1997) Design of peptide and polypeptide vaccines. Curr. Opin. Biotechnol. 8, 442–448.

    Article  CAS  PubMed  Google Scholar 

  12. Benjamin, D. C., Berzofsky, J. A., and East, I. J. (1987) The antigenic structure of proteins: a reappraisal. Annu. Rev. Immunol. 2, 67–101.

    Article  Google Scholar 

  13. Walden, P. (1996) T-cell epitope determination. Curr. Opin. Immunol. 8, 68–74.

    Article  CAS  PubMed  Google Scholar 

  14. Merrifield, R. B. (1963) Solid phase synthesis: I The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154.

    Article  CAS  Google Scholar 

  15. Merrifield, R. B., Stewart, J. M., and Jernberg, N. (1966) Instrument for automated synthesis of peptides. Anal. Chem. 38, 1905–1914.

    Article  CAS  PubMed  Google Scholar 

  16. Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82, 5131–5135.

    Article  CAS  PubMed  Google Scholar 

  17. Geysen, H. M., Meloen, R. H., and Barteling, S. J. (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 81, 3998–4002.

    Article  CAS  PubMed  Google Scholar 

  18. Van der Zee, R., Van Eden, W., Meloen, R. H., Noordzij, A., and Van Embden, E. J. (1989) Efficient mapping and characterization of a T cell epitope by the simultaneous synthesis of multiple peptides. Eur. J. Immunol. 19, 43–47.

    Article  PubMed  Google Scholar 

  19. Hammer, J. (1995) New methods to predict MHC-binding sequences within protein antigens. Curr. Opin. Immunol. 7, 263–269.

    Article  CAS  PubMed  Google Scholar 

  20. Rotzschke, O. and Falk, K. (1994) Origin, structure and motifs of naturally processed MHC class II ligands. Curr. Opin. Immunol. 6, 45–51.

    Article  CAS  PubMed  Google Scholar 

  21. Ansorge, S., Scho, E., and Kunz, D. (1991) Membrane-bound peptidases of lymphocytes: functional implications. Biochim. Biophys. Acta. 50, 799–807.

    CAS  Google Scholar 

  22. Rammensee, H. G., Bachmann, J., Emmerich, N., Bachor, O. A., and Stevanovic, S. (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219.

    Article  CAS  PubMed  Google Scholar 

  23. Hunt, D. F., Henderson, R. A., Shabanowitz, J., Sakaguchi, K., Michel, H., Sevilir, N., et al. (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255, 1261–1263.

    Article  CAS  PubMed  Google Scholar 

  24. Sparbier, K. and Walden, P. (1999) T cell receptor specificity and mimotopes. Curr. Opin. Immunol. 11, 214–218.

    Article  CAS  PubMed  Google Scholar 

  25. Pinilla, C., Martin, R., Gran, B., Appel J. R., Boggiano, C., Wilson, D. B., and R. A. Houghten. (1999) Exploring immunological specificity using synthetic peptide combinatorial libraries. Curr. Opin. Immunol. 11, 193–202.

    Article  CAS  PubMed  Google Scholar 

  26. Chicz, R. M., Urban, R. G., Gorga, J. C., Vignali, D., Lane, W. S., and Strominger, J. L. (1993) Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J. Exp. Med. 178, 27–47.

    Article  CAS  PubMed  Google Scholar 

  27. Reece, J. C., McGregor, D. L., Geysen, H. M., and Rodda, S. J. (1994) Scanning for T helper epitopes with PBMC using pools of short synthetic peptides. J. Immunol. Meth. 172, 241–254.

    Article  CAS  Google Scholar 

  28. Delvig, A. A., Rosenqvist, E., Oftung, F., and Robinson, J. H. (1997) T-cell epitope mapping the PorB protein of serogroup B Neisseria meningitidis in B10 congenic strains of mice. Clin. Immunol. Immunopathol. 85, 134–142.

    Article  CAS  PubMed  Google Scholar 

  29. Wiertz, E., Delvig, A. A., Donders, E., Brugghe, H. F., van Unen, L. M. A., Timmermans, H. A. M., et al. (1996) T cell response to outer membrane proteins of Neisseria meningitidis: comparative study of the Opa, Opc and PorA proteins. Infect. Immun. 64, 298–304.

    CAS  PubMed  Google Scholar 

  30. Mathis, D. J., Benoist, C., Williams, V. E., Kanter, M., and McDevitt, H. O. (1983) Several mechanisms can account for defective E gene expression in different mouse haplotypes. Proc. Natl. Acad. Sci. USA 80, 273–277.

    Article  CAS  PubMed  Google Scholar 

  31. Sant, A. J., Braunstein, N. S., and Germain, R. N. (1987) Predominant role of amino-terminal sequences in dictating efficiency of class II major histocompatibility complex αβ dimer expression. Proc. Natl. Acad. Sci. USA 84, 8065–8069.

    Article  CAS  PubMed  Google Scholar 

  32. Knight, S. C. (1987) Lymphocyte proliferation assays, in Lymphocytes: A Practical Approach (Klaus, G. G. B., ed.), IRL Press, Washington, 189–207.

    Google Scholar 

  33. Deane, R. (1993) T cell epitope mapping with PIN peptides. Pinpoints Mimotopes Peptide Technol. 6, 1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Delvig, A.A., Robinson, J.H. (2001). CD4 T-Cell Epitope Mapping. In: Pollard, A.J., Maiden, M.C. (eds) Meningococcal Vaccines. Methods in Molecular Medicine™, vol 66. Humana Press. https://doi.org/10.1385/1-59259-148-5:349

Download citation

  • DOI: https://doi.org/10.1385/1-59259-148-5:349

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-801-1

  • Online ISBN: 978-1-59259-148-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics