Skip to main content

Animal Models for Meningococcal Disease

  • Protocol

Part of the Methods in Molecular Medicine™ book series (MIMM,volume 66)

Abstract

There are many in vitro systems for the study of meningococcal pathogenesis, but it is only in animal models of infection that the interactions of the bacteria with whole tissues and the humoral and cellular immune systems can be assessed. Animal-infection models are also of great importance for the assessment of the protective efficacy of existing and candidate vaccines. However, the relevance of these animal models to human disease and how well protection assessed in them corresponds to protection against human disease, must always be considered. Animal models for pathogenic Neisseria have been previously reviewed (1).

Keywords

  • Meningococcal Disease
  • Iron Source
  • Challenge Dose
  • Mueller Hinton Broth
  • Iron Dextran

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-148-5:241
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-148-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   229.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Arko, R. J. (1989) Animal models for pathogenic Neisseria species. Clin. Microbiol. Rev. 2(Suppl.), S56–S59.

    PubMed  Google Scholar 

  2. Flexner, S. (1907) Experimental cerebro-spinal meningitis in monkeys. J. Exp. Med. 9, 142–166.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Branham, S. E., Lillie, R. D., and Pabst, A. M. (1932) Observations on experimental meningitis in rabbits. Public Health Rep. 47, 2137–2150.

    Google Scholar 

  4. Branham, S. E. and Lillie, R. D. (1937) Experimental meningitis in guinea pigs. Public Health Rep. 52, 1135–1142.

    Google Scholar 

  5. Frasch, C. E. and Robbins, J. D. (1978) Protection against group B meningococcal disease. III. Immunogenicity of serotype 2 vaccines and specificity of protection in a guinea pig model. J. Exp. Med. 147, 629–644.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Frasch, C. E., Parkes, L., McNelis, R. M., and Gotschlich, E. C. (1976) Protection against group B meningococcal disease. I. Comparison of group-specific and type-specific protection in the chick embryo model. J. Exp. Med. 144, 319–329.

    CAS  CrossRef  PubMed  Google Scholar 

  7. Pine, L., Quinn, F. D., Ewing, E. P. Jr, Birkness, K. A., White, E. H., Stephens, D. S., and Ribot, E. (1995) Evaluation of the chick embryo for the determination of relative virulence of Neisseria meningitidis. FEMS Microbiol. Lett. 130, 37–44.

    CAS  PubMed  Google Scholar 

  8. Miller, C. P. (1933) Experimental meningococcal infection in mice. Science 78, 340–341.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Miller, C. P. and Castles, R. (1936) Experimental meningococcal infection in mice. J. Infect. Dis. 58, 263–279.

    CrossRef  Google Scholar 

  10. Branham, S. E. and Pittman, M. (1940) Recommended procedure for mouse protection test in evaluation of anti-meningococcus serum. Public Health Rep. 55, 2340–2346.

    Google Scholar 

  11. Gray-Owen, S. D. and Schryvers, A. B. (1996) Bacterial transferrin and lactoferrin receptors. Trends Microbiol. 4, 185–191.

    CAS  CrossRef  PubMed  Google Scholar 

  12. Holbein, B. E. (1980) Iron-controlled infection with Neisseria meningitidis in mice. Infect. Immun. 29, 886–891.

    CAS  PubMed  Google Scholar 

  13. Holbein, B. E. (1981) Enhancement of Neisseria meningitidis infection in mice by addition of iron bound to transferrin. Infect. Immun. 34, 120–125.

    CAS  PubMed  Google Scholar 

  14. Holbein, B. E. (1981) Differences in virulence for mice between disease and carrier strains of Neisseria meningitidis. Can. J. Microbiol. 27, 738–741.

    CAS  CrossRef  PubMed  Google Scholar 

  15. Holbein, B. E., Jericho, K. W., and Likes, G. C. (1979) Neisseria meningitidis infection in mice: influence of iron, variations in virulence among strains, and pathology. Infect. Immun. 24, 545–551.

    CAS  PubMed  Google Scholar 

  16. Schryvers, A. B. and Gonzalez, G. C. (1989) Comparison of the abilities of different protein sources of iron to enhance Neisseria meningitidis infection in mice. Infect. Immun. 57, 2425–2429.

    CAS  PubMed  Google Scholar 

  17. Brodeur, B. R., Tsang, P. S., Hamel, J., Larose, Y., and Montplaisir, S. (1986) Mouse models of infection for Neisseria meningitidis B,2b and Haemophilus influenzae type b diseases. Can. J. Microbiol. 32, 33–37.

    CAS  PubMed  Google Scholar 

  18. Woods, J. P., Frelinger, J. A., Warrack, G., and Cannon, J. G. (1988) Mouse genetic locus Lps influences susceptibility to Neisseria meningitidis infection. Infect. Immun. 56, 1950–1955.

    CAS  PubMed  Google Scholar 

  19. Wilks, K. E., Dunn, K. L., Farrant, J. L., Reddin, K. M., Gorringe, A. R., Langford, P. R., and Kroll, J. S. (1998) Periplasmic superoxide dismutase in meningococcal pathogenicity. Infect. Immun. 66, 213–217.

    CAS  PubMed  Google Scholar 

  20. Huet, M. and Suire, A. (1981) An animal model for testing the activity of meningococcal polysaccharide vaccine. J. Biol. Stand. 9, 67–74.

    CAS  CrossRef  PubMed  Google Scholar 

  21. Danve, B., Lissolo, L., Mignon, M., Colombani, S., Schryvers, A. B., and Quentin-Millet M-J. (1993) Transferrin binding proteins isolated from Neisseria meningitidis elicit protective and bactericidal antibodies in laboratory animals. Vaccine 11, 1214–1220.

    CAS  CrossRef  PubMed  Google Scholar 

  22. Martin, D., Cadieux, N., Hamel, J., and Brodeur, B. R. (1997) Highly conserved Neisseria meningitidis surface protein confers protection against experimental infection. J. Exp. Med. 185, 1173–1183.

    CAS  CrossRef  PubMed  Google Scholar 

  23. Brodeur, B. R., Larose, Y., Tsang, P., Hamel, J., Ashton, F., and Ryan, A. (1985) Protection against infection with Neisseria meningitidis group B serotype 2b by passive immunization with serotype-specific monoclonal antibody. Infect. Immun. 50, 510–516.

    CAS  PubMed  Google Scholar 

  24. Saukkonen, K., Abdillahi, H., Poolman, J. T., and Leinonen, M. (1987) Protective efficacy of monoclonal antibodies to class 1 and class 3 outer membrane proteins of Neisseria meningitidis B:15:P1.16 in infant rat infection model: prospects for vaccine development. Microb. Pathog. 3, 261–267.

    CAS  CrossRef  PubMed  Google Scholar 

  25. Saukkonen, K. (1988) Experimental meningococcal meningitis in the infant rat. Microb. Pathog. 4, 203–211.

    CAS  CrossRef  PubMed  Google Scholar 

  26. Saukkonen, K., Leinonen, M., Abdillahi, H., and Poolman, J. T. (1989) Comparative evaluation of potential components for group B meningococcal vaccine by passive protection in the infant rat and in vitro bactericidal assay. Vaccine 7, 325–328.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Toropainen, M., Kayhty, H., Saarinen, L., Rosenqvist, E., Hoiby, E. A., Wedege, E., et al. (1999) The infant rat model adapted to evaluate human sera for protective immunity to group B meningococci. Vaccine 7, 2677–2689.

    CrossRef  Google Scholar 

  28. Salit, I. E. and Tomalty, L. (1984) Experimental meningococcal infection in neonatal mice: differences in virulence between strains isolated from human cases and carriers. Can. J. Microbiol. 30, 1042–1045.

    CAS  CrossRef  PubMed  Google Scholar 

  29. Salit, I. E., Van Melle, E., and Tomalty, L. (1984) Experimental meningococcal infection in neonatal animals: models for mucosal invasiveness. Can. J. Microbiol. 30, 1022–1029.

    CAS  CrossRef  PubMed  Google Scholar 

  30. Mackinnon, F. G., Gorringe, A. R., Funnell, S. G., and Robinson, A. (1992) Intranasal infection of infant mice with Neisseria meningitidis. Microb. Pathog. 12, 415–420.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Mackinnon, F. G., Borrow, R., Gorringe, A. R., Fox, A. J., Jones, D. M., and Robinson, A. (1993) Demonstration of lipooligosaccharide immunotype and cap sule as virulence factors for Neisseria meningitidis using an infant mouse intranasal infection model. Microb. Pathog. 15, 359–366.

    CAS  CrossRef  PubMed  Google Scholar 

  32. Gupta, R. K. and Siber, G. R. (1994) Comparison of adjuvant activities of aluminium phosphate, calcium phosphate and stearyl tyrosine for tetanus toxoid. Biologicals 22, 53–63.

    CAS  CrossRef  PubMed  Google Scholar 

  33. Seiler, A., Reinhardt, R., Sarkari, J., Caugant, D. A., and Achtman, M. (1996) Allelic polymorphism and site-directed recombinantion in the opc locus of Neisseria meningitidis. Mol. Microbiol. 19, 841–856.

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Gorringe, A.R., Reddin, K.M., Voet, P., Poolman, J.T. (2001). Animal Models for Meningococcal Disease. In: Pollard, A.J., Maiden, M.C. (eds) Meningococcal Vaccines. Methods in Molecular Medicine™, vol 66. Humana Press. https://doi.org/10.1385/1-59259-148-5:241

Download citation

  • DOI: https://doi.org/10.1385/1-59259-148-5:241

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-801-1

  • Online ISBN: 978-1-59259-148-0

  • eBook Packages: Springer Protocols