Skip to main content

Immune Response and Host-Pathogen Interactions

  • Protocol
  • 847 Accesses

Part of the Methods in Molecular Medicine™ book series (MIMM,volume 66)

Abstract

For the most part, the relationship between the pathogen, Neisseria meningitidis, and humans is uneventful. Colonization of the human nasopharynx at various times during life is an almost universal experience but clinically overt disease is unusual except during epidemics. This overview considers the relationship between the meningococcus and humans, reviewing current immunological and molecular understanding of this interaction of relevance to development of immunogenic vaccines.

Keywords

  • Conjugate Vaccine
  • Capsular Polysaccharide
  • Meningococcal Disease
  • Neisseria Meningitidis
  • Invasive Meningococcal Disease

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-148-5:23
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-148-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   229.00
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gold, R., Goldschneider, I., Lepow, M. L., Draper, T. F., and Randolph, M. (1978) Carriage of Neisseria meningitidis and Neisseria lactamica in infants and children. J. Infect. Dis. 137, 112–121.

    CAS  PubMed  Google Scholar 

  2. Cartwright, K. A., Stuart, J. M., and Robinson, P. M. (1991) Meningococcal carriage in close contacts of cases. Epidemiol. Infect. 106, 133–141.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Virji, M., Alexandrescu, C., Ferguson, D. J., Saunders, J. R., and Moxon, E. R. (1992) Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol. Microbiol. 6, 1271–1279.

    CAS  CrossRef  PubMed  Google Scholar 

  4. Dehio, C., Gray-Owen, S. D., and Meyer, T. F. (2000) Host cell invasion by pathogenic Neisseriae. Subcell. Biochem. 33, 61–96.

    CAS  PubMed  Google Scholar 

  5. Nassif, X., Lowy, J., Stenberg, P., O’Gaora, P., Ganji, A., and So, M. (1993) Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol. Microbiol. 8, 719–725.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Kallstrom, H., Islam, M. S., Berggren, P. O., and Jonsson, A. B. (1998) Cell signaling by the type IV pili of pathogenic Neisseria. J. Biol. Chem. 273, 21,777–21,782.

    CAS  CrossRef  PubMed  Google Scholar 

  7. Taha, M. K., Morand, P. C., Pereira, Y., Eugene, E., Giorgini, D., Larribe, M., and Nassif, X. (1998) Pilus-mediated adhesion of Neisseria meningitidis: the essential role of cell contact-dependent transcriptional upregulation of the PilC1 protein. Mol. Microbiol. 28, 1153–1163.

    CAS  CrossRef  PubMed  Google Scholar 

  8. Virji, M., Makepeace, K., Ferguson, D. J., and Watt, S. M. (1996) Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol. Microbiol. 22, 941–950.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Virji, M., Makepeace, K., Ferguson, D. J., Achtman, M., Sarkari, J., and Moxon, E. R. (1992) Expression of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitidis. Mol. Microbiol. 6, 2785–2795.

    CAS  CrossRef  PubMed  Google Scholar 

  10. de Vries, F. P., Cole, R., Dankert, J., Frosch, M., and van Putten, J. P. (1998) Neisseria meningitidis producing the Opc adhesin binds epithelial cell proteoglycan receptors. Mol. Microbiol. 27, 1203–1212.

    CrossRef  PubMed  Google Scholar 

  11. Virji, M., Makepeace, K., and Moxon, E. R. (1994) Distinct mechanisms of interactions of Opc-expressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions. Mol. Microbiol. 14, 173–184.

    CAS  CrossRef  PubMed  Google Scholar 

  12. Hammerschmidt, S., Muller, A., Sillmann, H., Muhlenhoff, M., Borrow, R., Fox, A., et al. (1996) Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease. Mol. Microbiol. 20, 1211–1220.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Pollard, A. J. and Maiher, M. C. J., eds. (2001) Meningococcal Disease, Humana Press, Totowa, NJ.

    Google Scholar 

  14. Brandtzæg, P. (1992) Humoral immune response patterns of human mucosae: induction and relation to bacterial respiratory tract infections. J. Infect. Dis. 165(Suppl. 1), S167–S176.

    PubMed  Google Scholar 

  15. Hamadeh, R. M., Galili, U., Zhou, P., and Griffiss, J. M. (1995) Anti-alphagalactosyl immunoglobulin A (IgA), IgG, and IgM in human secretions. Clin. Diagn. Lab. Immunol. 2, 125–131.

    CAS  PubMed  Google Scholar 

  16. Jarvis, G. A. and Griffiss, J. M. (1991) Human IgA1 blockade of IgG-initiated lysis of Neisseria meningitidis is a function of antigen-binding fragment binding to the polysaccharide capsule. J. Immunol. 147, 1962–1967.

    CAS  PubMed  Google Scholar 

  17. Kobayashi, K., Fujiyama, Y., Hagiwara, K., and Kondoh, H. (1987) Resistance of normal serum IgA and secretory IgA to bacterial IgA proteases: evidence for the presence of enzyme-neutralizing antibodies in both serum and secretory IgA, and also in serum IgG. Microbiol. Immunol. 31, 1097–1106.

    CAS  PubMed  Google Scholar 

  18. Zorgani, A. A., James, V. S., Stewart, J., Blackwell, C. C., Elton, R. A., and Weir, D. M. (1996) Serum bactericidal activity in a secondary school population following an outbreak of meningococcal disease: effects of carriage and secretor status. FEMS Immunol. Med. Microbiol. 14, 73–81.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Zorgani, A. A., Stewart, J., Blackwell, C. C., Elton, R. A., and Weir, D. M. (1992) Secretor status and humoral immune responses to Neisseria lactamica and Neisseria meningitidis. Epidemiol. Infect. 109, 445–452.

    CAS  CrossRef  PubMed  Google Scholar 

  20. Stuart, J. M., Cartwright, K. A., Robinson, P. M., and Noah, N. D. (1989) Effect of smoking on meningococcal carriage. Lancet 2, 723–725.

    CAS  CrossRef  PubMed  Google Scholar 

  21. El Ahmer, O. R., Essery, S. D., Saadi, A. T., Raza, M. W., Ogilvie, M. M., Weir, D. M., and Blackwell, C. C. (1999) The effect of cigarette smoke on adherence of respiratory pathogens to buccal epithelial cells. FEMS Immunol. Med. Microbiol. 23, 27–36.

    CrossRef  PubMed  Google Scholar 

  22. Stephens, D. S., Hoffman, L. H., and McGee, Z. A. (1983) Interaction of Neisseria meningitidis with human nasopharyngeal mucosa: attachment and entry into columnar epithelial cells. J. Infect. Dis. 148, 369–376.

    CAS  PubMed  Google Scholar 

  23. Estabrook, M. M., Zhou, D., and Apicella, M. A. (1998) Nonopsonic phagocytosis of group C Neisseria meningitidis by human neutrophils. Infect. Immun. 66, 1028–1036.

    CAS  PubMed  Google Scholar 

  24. McNeil, G. and Virji, M. (1997) Phenotypic variants of meningococci and their potential in phagocytic interactions: the influence of opacity proteins, pili, PilC and surface sialic acids. Microb. Pathol. 22, 295–304.

    CAS  CrossRef  Google Scholar 

  25. Ross, S. C., Rosenthal, P. J., Berberich, H. M., and Densen, P. (1987) Killing of Neisseria meningitidis by human neutrophils: implications for normal and complement-deficient individuals. J. Infect. Dis. 155, 1266–1275.

    CAS  PubMed  Google Scholar 

  26. Roberts, R. B. (1967) The interaction in vitro between group B meningococci and rabbit polymorphonuclear leukocytes. Demonstration of type specific opsonins and bactericidins. J. Exp. Med. 126, 795–818.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Guttormsen, H. K., Bjerknes, R., Næss, A., Lehmann, V., Halstensen, A., Sørnes, S., and Solberg, C. O. (1992) Cross-reacting serum opsonins in patients with meningococcal disease. Infect. Immun. 60, 2777–2783.

    CAS  PubMed  Google Scholar 

  28. Styrt, B. (1990) Infection associated with asplenia: risks, mechanisms, and prevention. Am. J. Med. 88, 33N–42N.

    CAS  CrossRef  PubMed  Google Scholar 

  29. Ellison, E. C. and Fabri, P. J. (1983) Complications of splenectomy. Etiology, prevention and management. Surg. Clin. North Am. 63, 1313–1330.

    CAS  PubMed  Google Scholar 

  30. Goldschneider, I., Gotschlich, E. C., and Artenstein, M.S. (1969) Human immunity to the meningococcus. I. The role of humoral antibodies. J. Exp. Med. 129, 1307–1326.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Wahdan, M. H., Sallam, S. A., Hassan, M. N., Abdel Gawad, A., Rakha, A. S., Sippel, J. E., et al. (1977) A second controlled field trial of a serogroup A meningococcal polysaccharide vaccine in Alexandria. Bull. WHO 55, 645–651.

    CAS  PubMed  Google Scholar 

  32. Peltola, H., Mäkelä, H., Käyhty, H., Jousimies, H., Herva, E., Hallstrom, K., et al. (1977) Clinical efficacy of meningococcus group A capsular polysaccharide vaccine in children three months to five years of age. N. Engl. J. Med. 297, 686–691.

    CAS  CrossRef  PubMed  Google Scholar 

  33. Amato Neto, V., Finger, H., Gotschlich, E. C., Feldman, R. A., de Avila, C. A., Konichi, S. R., and Laus, W. C. (1974) Serologic response to serogroup C meningococcal vaccine in Brazilian preschool children. Rev. Inst. Med. Trop. Sao Paulo 16, 149–153.

    CAS  PubMed  Google Scholar 

  34. Goldschneider, I., Gotschlich, E. C., and Artenstein, M. S. (1969) Human immunity to the meningococcus. II. Development of natural immunity. J. Exp. Med. 129, 1327–1348.

    CAS  CrossRef  PubMed  Google Scholar 

  35. Nicholson, A. and Lepow, I. H. (1979) Host defense against Neisseria meningitidis requires a complement-dependent bactericidal activity. Science 205, 298-289.

    Google Scholar 

  36. Salit, I. E. (1981) Meningococcemia caused by serogroup W135. Association with hypogammaglobulinemia. Arch. Intern. Med. 141, 664–665.

    CAS  CrossRef  PubMed  Google Scholar 

  37. Hobbs, J. R., Milner, R. D., and Watt, P. J. (1967) Gamma-M deficiency predisposing to meningococcal septicaemia. BMJ 4, 583–586.

    CAS  CrossRef  PubMed  Google Scholar 

  38. Pollard, A. J. and Levin, M. (2000) Production of low-avidity antibody by infants after infection with serogroup B meningococci. Lancet 356, 2065–2066.

    CAS  CrossRef  PubMed  Google Scholar 

  39. Granoff, D. M., Maslanka, S. E., Carlone, G. M., Plikaytis, B. D., Santos, G. F., Mokatrin, A., and Raff, H. V. (1998) A modified enzyme-linked immunosorbent assay for measurement of antibody responses to meningococcal C polysaccharide that correlate with bactericidal responses. Clin. Diagn. Lab. Immunol. 5, 479–485.

    CAS  PubMed  Google Scholar 

  40. Finne, J., Bitter-Suermann, D., Goridis, C., and Finne, U. (1987) An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues. J. Immunol. 138, 4402–4407.

    CAS  PubMed  Google Scholar 

  41. Jarvis, G. A. and Vedros, N. A. (1987) Sialic acid of group B Neisseria meningitidis regulates alternative complement pathway activation. Infect. Immun. 55, 174–180.

    CAS  PubMed  Google Scholar 

  42. Hammerschmidt, S., Birkholz, C., Zahringer, U., Robertson, B. D., van Putten, J., Ebeling, O., and Frosch, M. (1994) Contribution of genes from the capsule gene complex (cps) to lipooligosaccharide biosynthesis and serum resistance in Neisseria meningitidis. Mol. Microbiol. 11, 885–896.

    CAS  CrossRef  PubMed  Google Scholar 

  43. Zollinger, W. D. and Mandrell, R. E. (1983) Importance of complement source in bactericidal activity of human antibody and murine monoclonal antibody to meningococcal group B polysaccharide. Infect. Immun. 40, 257–264.

    CAS  PubMed  Google Scholar 

  44. Bax, W. A., Cluysenaer, O. J. J., Bartelink, A. K. M., Aerts, P., Ezekowitz, R. A. B., and Van Dyk, H. (1999) Familiar Deficiency of Mannose-Binding Lectin Predisposing to Meningococcal Disease. American Society for Microbiology, San Francisco, pp. 401.

    Google Scholar 

  45. Bredius, R. G., Derkx, B. H., Fijen, C. A., de Wit, T. P., de Haas, M., Weening, R. S., et al. (1994) Fc gamma receptor IIa (CD32) polymorphism in fulminant meningococcal septic shock in children. J. Infect. Dis. 170, 848–853.

    CAS  PubMed  Google Scholar 

  46. Fijen, C. A., Bredius, R. G., Kuijper, E. J., Out, T. A., De Haas, M., De Wit, A. P., et al. (2000) The role of Fcgamma receptor polymorphisms and C3 in the immune defence against Neisseria meningitidis in complement-deficient individuals. Clin. Exp. Immunol. 120, 338–345.

    CAS  CrossRef  PubMed  Google Scholar 

  47. Baines, P. B., Marzouk, O., Thomson, A. P., Sills, J. A., Riordan, F. A., and Hart, C. A. (1999) Endothelial cell adhesion molecules in meningococcal disease. Arch. Dis. Child. 80, 74–76.

    CAS  CrossRef  PubMed  Google Scholar 

  48. Heyderman, R. S., Klein, N. J., Daramola, O. A., Hammerschmidt, S., Frosch, M., Robertson, B. D., et al. (1997) Induction of human endothelial tissue factor expression by Neisseria meningitidis: the influence of bacterial killing and adherence to the endothelium. Microb. Pathol. 22, 265–274.

    CAS  CrossRef  Google Scholar 

  49. La Scolea, L. J., Jr., Dryja, D., Sullivan, T. D., Mosovich, L., Ellerstein, N., and Neter, E. (1981) Diagnosis of bacteremia in children by quantitative direct plating and a radiometric procedure. J. Clin. Microbiol. 13, 478–482.

    Google Scholar 

  50. La Scolea, L. J., Jr. and Dryja, D. (1984) Quantitation of bacteria in cerebrospinal fluid and blood of children with meningitis and its diagnostic significance. J. Clin. Microbiol. 19, 187–190.

    Google Scholar 

  51. Brandtzæg, P., Sandset, P. M., Joo, G. B., Øvstebø, R., Abildgaard, U., and Kierulf, P. (1989) The quantitative association of plasma endotoxin, antithrombin, protein C, extrinsic pathway inhibitor and fibrinopeptide A in systemic meningococcal disease. Thromb. Res. 55, 459–470.

    CrossRef  PubMed  Google Scholar 

  52. Zwahlen, A. and Waldvogel, F. A. (1984) Magnitude of bacteremia and complement activation during Neisseria meningitidis infection: study of two co-primary cases with different clinical presentations. Eur. J. Clin. Microbiol. 3, 439–441.

    CAS  CrossRef  PubMed  Google Scholar 

  53. Brandtzæg, P., Kierulf, P., Gaustad, P., Skulberg, A., Bruun, J. N., Halvorsen, S., and Sørensen, E. (1989) Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease. J. Infect. Dis. 159, 195–204.

    PubMed  Google Scholar 

  54. Sullivan, T. D. and LaScolea, L. J., Jr. (1987) Neisseria meningitidis bacteremia in children: quantitation of bacteremia and spontaneous clinical recovery without antibiotic therapy. Pediatrics 80, 63–67.

    CAS  PubMed  Google Scholar 

  55. Virji, M., Käyhty, H., Ferguson, D. J., Alexandrescu, C., Heckels, J. E., and Moxon, E. R. (1991) The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol. Microbiol. 5, 1831–1841.

    CAS  CrossRef  PubMed  Google Scholar 

  56. Pron, B., Taha, M. K., Rambaud, C., Fournet, J. C., Pattey, N., Monnet, J. P., et al. (1997) Interaction of Neisseria maningitidis with the components of the blood-brain barrier correlates with an increased expression of PilC. J. Infect. Dis. 176, 1285–1292.

    CAS  CrossRef  PubMed  Google Scholar 

  57. Virji, M., Makepeace, K., Peak, I., Payne, G., Saunders, J. R., Ferguson, D. J., and Moxon, E. R. (1995) Functional implications of the expression of PilC proteins in meningococci. Mol. Microbiol. 16, 1087–1097.

    CAS  CrossRef  PubMed  Google Scholar 

  58. Brandtzæg, P., Ovsteboo, R., and Kierulf, P. (1992) Compartmentalization of lipopolysaccharide production correlates with clinical presentation in meningococcal disease. J. Infect. Dis. 166, 650–652.

    PubMed  Google Scholar 

  59. van Furth, A. M., Seijmonsbergen, E. M., Langermans, J. A., Groeneveld, P. H., de Bel, C. E., and van Furth, R. (1995) High levels of interleukin 10 and tumor necrosis factor alpha in cerebrospinal fluid during the onset of bacterial meningitis. Clin. Infect. Dis. 21, 220–222.

    PubMed  Google Scholar 

  60. Rusconi, F., Parizzi, F., Garlaschi, L., Assael, B. M., Sironi, M., Ghezzi, P., and Mantovani, A. (1991) Interleukin 6 activity in infants and children with bacterial meningitis. The Collaborative Study on Meningitis. Pediatr. Infect. Dis. J. 10, 117–121.

    CAS  CrossRef  PubMed  Google Scholar 

  61. van Deuren, M., van der Ven-Jongekrijg, J., Bartelink, A. K., van Dalen, R., Sauerwein, R. W., and van der Meer, J. W. (1995) Correlation between proinflammatory cytokines and antiinflammatory mediators and the severity of disease in meningococcal infections. J. Infect. Dis. 172, 433–439.

    PubMed  Google Scholar 

  62. Mitchell, M. S., Rhoden, D. L., and King, E. O. (1965) Lactose fermenting organisms resembling Neisseria meningitidis. J. Bacteriol. 90, 560.

    CAS  PubMed  Google Scholar 

  63. Hollis, D. G., Wiggins, G. L., Weaver, R. E., and Schubert, J. H. (1970) Current status of lactose-fermenting Neisseria. Ann. NY Acad. Sci. 174, 444–449.

    CAS  CrossRef  PubMed  Google Scholar 

  64. Hoff, G. E. and Høiby, N. (1978) Cross-reactions between Neisseria meningitidis and twenty-seven other bacterial species. Acta. Pathol. Microbiol. Scand. 86, 87–92.

    CAS  Google Scholar 

  65. Glode, M. P., Robbins, J. B., Liu, T. Y., Gotschlich, E. C., Orskov, I., and Orskov, F. (1977) Cross-antigenicity and immunogenicity between capsular polysaccharides of group C Neisseria meningitidis and of Escherichia coli K92. J. Infect. Dis. 135, 94–104.

    CAS  PubMed  Google Scholar 

  66. Grados, O. and Ewing, W. H. (1970) Antigenic relationship between Escherichia coli and Neisseria meningitidis. J. Infect. Dis. 122, 100–103.

    CAS  PubMed  Google Scholar 

  67. Reller, L. B., MacGregor, R. R., and Beaty, H. N. (1973) Bactericidal antibody after colonization with Neisseria meningitidis. J. Infect. Dis. 127, 56–62.

    CAS  PubMed  Google Scholar 

  68. Mond, J. J., Vos, Q., Lees, A., and Snapper, C. M. (1995) T cell independent antigens. Curr. Opin. Immunol. 7, 349–354.

    CAS  CrossRef  PubMed  Google Scholar 

  69. Hougs, L., Juul, L., Ditzel, H. J., Heilmann, C., Svejgaard, A., and Barington, T. (1999) The first dose of a Haemophilus influenzae type b conjugate vaccine reactivates memory B cells: evidence for extensive clonal selection, intraclonal affinity maturation, and multiple isotype switches to IgA2. J. Immunol. 162, 224–237.

    CAS  PubMed  Google Scholar 

  70. Baxendale, H. E., Davis, Z., White, H. N., Spellerberg, M. B., Stevenson, F. K., and Goldblatt, D. (2000) Immunogenetic analysis of the immune response to pneumococcal polysaccharide. Eur. J. Immunol. 30, 1214–1223.

    CAS  CrossRef  PubMed  Google Scholar 

  71. MacLennan, J., Obaro, S., Deeks, J., Williams, D., Pais, L., Carlone, G., Moxon, R., and Greenwood, B. (1999) Immune response to revaccination with meningococcal A and C polysaccharides in Gambian children following repeated immunisation during early childhood. Vaccine 17, 3086–3093.

    CAS  CrossRef  PubMed  Google Scholar 

  72. Gold, R., Lepow, M. L., Goldschneider, I., and Gotschlich, E. C. (1977) Immune response of human infants of polysaccharide vaccines of group A and C Neisseria meningitidis. J. Infect. Dis. 136(Suppl.), S31–S35.

    PubMed  Google Scholar 

  73. Maclennan, J. M., Deeks, J. J., Obaro, S., Williams, D., Carlone, G. M., Moxon, E. R., and Greenwood, B. M. (1998) Meningococcal serogroup C conjugate vaccination in infancy induces persistent immunological memory. In: Eleventh International Pathogenic Neisseria Conference, Nice, Nassif, X., Quentin-Millet, M.-J., and Taha, M.-K. (eds.). EDK, Paris, Nice, France, pp. 151.

    Google Scholar 

  74. Borrow, R., Goldblatt, D., Andrews, N., Richmond, P., and Miller, E. (2000) Influence of prior meningococcal C polysaccharide vaccine on response to meningococcal C conjugate vaccine in infants. ICAAC, Toronto 2000 (Abstract).

    Google Scholar 

  75. Goldblatt, D., Vaz, A. R., and Miller, E. (1998) Antibody avidity as a surrogate marker of successful priming by Haemophilus influenzae type b conjugate vaccines following infant immunization. J. Infect. Dis. 177, 1112–1115.

    CAS  CrossRef  PubMed  Google Scholar 

  76. Richmond, P., Borrow, R., Goldblatt, D., Findlow, J., Martin, S. R. M., Cartwright, K., and Miller, E. (2000) Ability of three different meningococcal C conjugate vaccines to induce immunological memory after a single dose in UK toddlers. J. Infect. Dis. 183, 160–163.

    CrossRef  PubMed  Google Scholar 

  77. Anonymous (1996) Meningococcal, in Immunisation Against Infectious Disease (Salisbury, D. M. and Begg, N. T., eds.), HMSO, London, pp. 147–154.

    Google Scholar 

  78. Anonymous (1997) Control and prevention of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb. Mortal Wkly. Rep. 46, 1–10.

    Google Scholar 

  79. Anonymous (2000) Meningococcal disease falls in vaccine recipients. Comm. Dis. Rev. Weekly 10, 133, 136.

    Google Scholar 

  80. Devi, S. J., Zollinger, W. D., Snoy, P. J., Tai, J. Y., Costantini, P., Norelli, F., et al. (1997) Preclinical evaluation of group B Neisseria meningitidis and Escherichia coli K92 capsular polysaccharide-protein conjugate vaccines in juvenile rhesus monkeys. Infect. Immun. 65, 1045–1052.

    CAS  PubMed  Google Scholar 

  81. Finne, J., Leinonen, M., and Mäkelä, P. H. (1983) Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet 2, 355–357.

    CAS  CrossRef  PubMed  Google Scholar 

  82. Idänpään-Heikkilä, I., Høiby, E. A., Chattopadhyay, P., Airaksinen, U., Michaelsen, T. M., and Wedege, E. (1995) Antibodies to meningococcal class 1 outer-membrane protein and its variable regions in patients with systemic meningococcal disease. J. Med. Microbiol. 43, 335–343.

    CrossRef  PubMed  Google Scholar 

  83. Guttormsen, H. K., Wetzler, L. M., and Næss, A. (1993) Humoral immune response to the class 3 outer membrane protein during the course of meningococcal disease. Infect. Immun. 61, 4734–4742.

    CAS  PubMed  Google Scholar 

  84. Mandrell, R. E. and Zollinger, W. D. (1989) Human immune response to meningococcal outer membrane protein epitopes after natural infection or vaccination. Infect. Immun. 57, 1590–1598.

    CAS  PubMed  Google Scholar 

  85. Estabrook, M. M., Baker, C. J., and Griffiss, J. M. (1993) The immune response of children to meningococcal lipooligosaccharides during disseminated disease is directed primarily against two monoclonal antibody-defined epitopes. J. Infect. Dis. 167, 966–970.

    CAS  PubMed  Google Scholar 

  86. Brooks, G. F., Lammel, C. J., Blake, M. S., Kusecek, B., and Achtman, M. (1992) Antibodies against IgA1 protease are stimulated both by clinical disease and asymptomatic carriage of serogroup A Neisseria meningitidis. J. Infect. Dis. 166, 1316–1321.

    CAS  PubMed  Google Scholar 

  87. Farrant, J. L., Kroll, J. S., Brodeur, B. R., and Martin, D. (1998) Detection of anti-NspA antibodies in sera from pateints convalescent after meningococcal infection. In: Eleventh International Pathogenic Neisseria Conference, Nice. Nassif, X., Quentin-Millet, M.-J., and Taha, M.-K. (eds.). EDK Paris, Nice, France, pp. 208.

    Google Scholar 

  88. Ala’Aldeen, D. A., Stevenson, P., Griffiths, E., Gorringe, A. R., Irons, L. I., Robinson, A., et al. (1994) Immune responses in humans and animals to meningococcal transferrin-binding proteins: implications for vaccine design. Infect. Immun. 62, 2984–2900.

    PubMed  Google Scholar 

  89. Black, J. R., Black, W. J., and Cannon, J. G. (1985) Neisserial antigen H.8 is immunogenic in patients with disseminated gonococcal and meningococcal infections. J. Infect. Dis. 151, 650–657.

    CAS  PubMed  Google Scholar 

  90. Pettersson, A., Maas, A., van Wassenaar, D., van der Ley, P., and Tommassen, J. (1995) Molecular characterization of FrpB, the 70-kilodalton iron-regulated outer membrane protein of Neisseria meningitidis. Infect. Immun. 63, 4181–4184.

    CAS  PubMed  Google Scholar 

  91. Johnson, A. S., Gorringe, A. R., Mackinnon, F. G., Fox, A. J., Borrow, R., and Robinson, A. (1999) Analysis of the human Ig isotype response to lactoferrin binding protein A from Neisseria meningitidis. FEMS Immunol. Med. Microbiol. 25, 349–354.

    CAS  CrossRef  PubMed  Google Scholar 

  92. Wiertz, E. J., Delvig, A., Donders, E. M., Brugghe, H. F., van Unen, L. M., Timmermans, H. A., et al. (1996) T-cell responses to outer membrane proteins of Neisseria meningitidis: comparative study of the Opa, Opc, and PorA proteins. Infect. Immun. 64, 298–304.

    CAS  PubMed  Google Scholar 

  93. van der Voort, E. R., van Dijken, H., Kuipers, B., van der Biezen, J., van der Ley, P., Meylis, J., et al. (1997) Human B-and T-cell responses after immunization with a hexavalent PorA meningococcal outer membrane vesicle vaccine. Infect. Immun. 65, 5184–5190.

    PubMed  Google Scholar 

  94. Næss, L. M., Oftung, F., Aase, A., Wetzler, L. M., Sandin, R., and Michaelsen, T. E. (1998) Human T-cell responses after vaccination with the Norwegian group B meningococcal outer membrane vesicle vaccine. Infect. Immun. 66, 959–965.

    PubMed  Google Scholar 

  95. Pollard, A. J., Galassini, R., Rouppe van der Voort, E. M., Hibberd, M., Booy, R., Langford, P., et al. (1999) Cellular immune responses to Neisseria meningitidis in children. Infect. Immun. 67, 2452–2463.

    CAS  PubMed  Google Scholar 

  96. Wiertz, E. J., van Gaans-van den Brink, J. A., Schreuder, G. M., Termijtelen, A. A., Hoogerhout, P., and Poolman, J. T. (1991) T cell recognition of Neisseria meningitidis class 1 outer membrane proteins. Identification of T cell epitopes with selected synthetic peptides and determination of HLA restriction elements. J. Immunol. 147, 2012–2018.

    CAS  PubMed  Google Scholar 

  97. Wiertz, E. J., van Gaans-van den Brink, J. A., Gausepohl, H., Prochnicka-Chalufour, A., Hoogerhout, P., and Poolman, J. T. (1992) Identification of T cell epitopes occurring in a meningococcal class 1 outer membrane protein using overlapping peptides assembled with simultaneous multiple peptide synthesis. J. Exp. Med. 176, 79–88.

    CAS  CrossRef  PubMed  Google Scholar 

  98. Wiertz, E., van Gaans-van den Brink, J., Hoogerhout, P., and Poolman, J. (1993) Microheterogeneity in the recognition of a HLA-DR2-restricted T cell epitope from a meningococcal outer membrane protein. Eur. J. Immunol. 23, 232–239.

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pollard, A.J., Goldblatt, D. (2001). Immune Response and Host-Pathogen Interactions. In: Pollard, A.J., Maiden, M.C. (eds) Meningococcal Vaccines. Methods in Molecular Medicine™, vol 66. Humana Press. https://doi.org/10.1385/1-59259-148-5:23

Download citation

  • DOI: https://doi.org/10.1385/1-59259-148-5:23

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-801-1

  • Online ISBN: 978-1-59259-148-0

  • eBook Packages: Springer Protocols