Skip to main content

Construction of LPS Mutants

  • Protocol

Part of the Methods in Molecular Medicine™ book series (MIMM,volume 66)

Abstract

Lipopolysaccharide (LPS) is a major component of the meningococcal outer membrane. It consists of a hexa-acylated glucosamine disaccharide substituted at both ends with diphosphoethanolamine, to which an oligosaccharide chain of up to 10 sugar residues is attached (1,2). It lacks a long repeating O-antigen side chain, as is typically found in many Enterobacteriaceae, and is therefore also sometimes referred to as lipooligosaccharide or LOS. The oligosaccharide part shows structural variation among strains, which forms the basis for division into the different immunotypes L1 to L12 (3). In addition, individual strains can vary their LPS structure through high-frequency phase variation of several genes encoding glycosyltransferases (4). This can affect virulence-related properties such as invasion of host cells and serum resistance (5). In the context of vaccine development, meningococcal LPS is relevant in several ways. First, the cell surface-exposed oligosaccharide part may contain epitopes recognized by bactericidal or otherwise protective antibodies; however, the presence of host-identical structures such as the terminal lacto-N-neotetraose means that the possibility of inducing autoimmune pathology should also be considered (6). Second, the membrane-anchoring lipid A part has strong endotoxin activity, by inducing the synthesis of proinflammatory cytokines in a variety of host cells (7). This plays a major role in the pathological manifestations of meningococcal sepsis, and is also responsible for most of the reactogenicity found with outer membrane vesicle (OMV)-based vaccines.

Keywords

  • Oligosaccharide Chain
  • Major Outer Membrane Protein
  • Outer Membrane Vesicle
  • Meningococcal Sepsis
  • Insertional Inactivation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-148-5:155
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-148-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   229.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kulshin, V. A., Zähringer, U., Lindner, B., Frasch, C. E., Tsai, C.-M., Dmitriev, B. A., and Rietschel, E. T. (1992) Structural characterization of the lipid A component of pathogenic Neisseria meningitidis. J. Bacteriol. 174, 1793–1800.

    CAS  PubMed  Google Scholar 

  2. Pavliak, V., Brisson, J.-R., Michon, F., Uhrin, D., and Jennings, H. J. (1993) Structure of the sialylated L3 lipopolysaccharide of Neisseria meningitidis. J. Biol. Chem. 268, 14146–14152.

    CAS  PubMed  Google Scholar 

  3. Scholten, R. J. P. M., Kuipers, B., Valkenburg, H. A., Dankert, J., Zollinger, W. D., and Poolman, J. T. (1994) Lipo-oligosaccharide immunotyping of Neisseria meningitidis by a whole-cell ELISA with monoclonal antibodies. J. Med. Microbiol. 41, 236–243.

    CAS  CrossRef  PubMed  Google Scholar 

  4. Jennings, M. P., Hood, D. W., Peak, I. R. A., Virji, M., and Moxon, E. R. (1995) Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol. Microbiol. 18, 729–740.

    CAS  CrossRef  PubMed  Google Scholar 

  5. van Putten, J. P. M. and Robertson, B. D. (1995) Molecular mechanisms and implications for infection of lipopolysaccharide variation in Neisseria. Mol. Microbiol. 16, 847–853.

    CrossRef  PubMed  Google Scholar 

  6. Tsai, C.-M. and Civin, C. I. (1991) Eight lipooligosaccharides of Neisseria meningitidis react with a monoclonal antibody which binds lacto-N-neotetraose (Gal 1-4GlcNAc 1-3Gal 1-4Glc). Infect. Immun. 59, 3604–3609.

    CAS  PubMed  Google Scholar 

  7. Zähringer, U., Lindner, B., and Rietschel, E. T. (1994) Molecular structure of lipid A, the endotoxic center of bacterial lipopolysaccharides, in Advances in Carbohydrate Chemistry and Biochemistry, vol. 50 (Horton, D., ed.), Academic Press, Inc., San Diego, pp. 211–276.

    CrossRef  Google Scholar 

  8. Steeghs, L., den Hartog, R., den Boer, A., Zomer, B., Roholl, P., and van der Ley, P. (1998) Meningitis bacterium is viable without endotoxin. Nature 392, 449–450.

    CAS  CrossRef  PubMed  Google Scholar 

  9. van der Ley, P., Kramer, M., Martin, A., Richards, J. C., and Poolman, J. T. (1997) Analysis of the icsBA locus required for biosynthesis of the inner core region from Neisseria meningitidis lipopolysaccharide. FEMS Microbiol. Lett. 146, 247–253.

    CrossRef  PubMed  Google Scholar 

  10. Jennings, M. P., van der Ley, P., Wilks, K. E., Maskell, D. J., Poolman, J. T., and Moxon, E. R. (1993) Cloning and molecular analysis of the galE gene of Neisseria meningitidis and its role in lipopolysaccharide biosynthesis. Mol. Microbiol. 10, 361–369.

    CAS  CrossRef  PubMed  Google Scholar 

  11. Lee, F. K. N., Stephens, D. S., Gibson, B. W., Engstrom, J. J., Zhou, D., and Apicella, M. A. (1995) Microheterogeneity of Neisseria lipooligosaccharide: analysis of a UDP-glucose 4-epimerase mutant of Neisseria meningitidis NMB. Infect. Immun. 63, 2508–2515.

    CAS  PubMed  Google Scholar 

  12. Stojiljkovic, I., Hwa, V., Larson, J., Lin, L., So, M., and Nassif, X. (1997) Cloning and characterization of the Neisseria meningitidis rfaC gene encoding α-1,5 heptosyltransferase I. FEMS Microbiol. Lett. 151, 41–49.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Jennings, M. P., Bisercic, M., Dunn, K. L. R., Virji, M., Martin, A., Wilks, K. E., et al. (1995) Cloning and molecular analysis of the lsi1 (rfaF) gene of Neisseria meningitidis which encodes a heptosyl-2-transferase involved in LPS biosynthesis: evaluation of surface exposed carbohydrates in LPS mediated toxicity for human endothelial cells. Microb. Pathog. 19, 391–407.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Koplow, J. and Goldfine, H. (1974) Alterations in the outer membrane of the cell envelope of heptose-deficient mutants of Escherichia coli. J. Bacteriol. 117, 527–543.

    CAS  PubMed  Google Scholar 

  15. Steeghs, L., Jennings, M. P., Poolman, J. T., and van der Ley, P. (1997) Isolation and characterization of the Neisseria meningitidis lpxD-fabZ-lpxA gene cluster involved in lipid A biosynthesis. Gene 190, 263–270.

    CAS  CrossRef  PubMed  Google Scholar 

  16. Karow, M., Fayet, O., Cegielska, A., Ziegelhoffer, T., and Georgopoulos, C. (1991) Isolation and characterization of the Escherichia coli htrB gene, whose product is essential for bacterial viability above 33°C in rich media. J. Bacteriol. 173, 741–750.

    CAS  PubMed  Google Scholar 

  17. Westphal, O. and Jann, J. K. (1965) Bacterial lipopolysaccharide extraction with phenol-water and further application of the procedure. Methods Carbohydr. Chem. 5, 83–91.

    CAS  Google Scholar 

  18. Tsai, C. M. and Frasch, C. E. (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal. Biochem. 119, 115–119.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Jennings, M. P., Srikhanta, Y. N., Moxon, E. R., Kramer, M., Poolman, J. T., Kuipers, B., and van der Ley, P. (1999) The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology 145, 3013–3021.

    CAS  PubMed  Google Scholar 

  20. Goodman, S. D. and Scocca, J. J. (1988) Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 85, 6982–6986.

    CAS  CrossRef  PubMed  Google Scholar 

  21. Monod, M., Denoya, C., and Dubnau, D. (1986) Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis. J. Bacteriol. 167, 138–147.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

van der Ley, P., Steeghs, L. (2001). Construction of LPS Mutants. In: Pollard, A.J., Maiden, M.C. (eds) Meningococcal Vaccines. Methods in Molecular Medicine™, vol 66. Humana Press. https://doi.org/10.1385/1-59259-148-5:155

Download citation

  • DOI: https://doi.org/10.1385/1-59259-148-5:155

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-801-1

  • Online ISBN: 978-1-59259-148-0

  • eBook Packages: Springer Protocols