Skip to main content

Application of Optical Biosensor Techniques to the Characterization of PorA-Antibody Binding Kinetics

  • Protocol

Part of the Methods in Molecular Medicine™ book series (MIMM,volume 66)

Abstract

The design of novel vaccines and strategies to combat infectious disease requires an understanding of the interactions between pathogen and host. Biological interactions in vivo often rely on specific recognition mechanisms that begin with a binding step. The development of biosensor technology has allowed the real-time measurement of the binding characteristics of biomolecules and provides a powerful new tool for the analysis of molecular recognition. An optical biosensor comprises a detector linked to an optical transducer that generates a measurable signal from a biological interaction occurring at the detector surface. Evanescent optical biosensors have been available since the late 1980s, the most commonly known commercial systems being IAsys (which uses the resonant mirror sensor) (1,2) and BIAcore (which employs the optical phenomenon of surface plasmon resonance) (3). There is a multitude of different applications of biosensor technology including measurement of concentration, kinetic analysis, structural studies, fermentation monitoring, receptor-cell interactions, and equilibrium analysis. The most widespread applications have been to protein-protein interactions, in particular receptor-ligand and antibody-antigen binding. More recent studies have been extended to protein-carbohydrate, DNA-DNA, and DNA-RNA interactions. Examples of the diverse uses of biosensors are found in the field of meningococcal research such as in the study of transferrin binding proteins (4,5), lipo-oligosaccharide (LOS)-antibody interactions (6) and serum responses to experimental vaccines (7).

Keywords

  • Association Rate
  • Regeneration Buffer
  • Interaction Profile
  • Association Rate Constant
  • PorA Variant

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-148-5:129
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-148-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   229.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cush, R., Cronin, J. M., Stewart, W. J., Maule, C. H., Molloy, J., and Goddard, N. J. (1993) The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. Part 1: Principle of operation and associated instrumentation. Biosensors Bioelectron. 8, 347–353.

    CAS  CrossRef  Google Scholar 

  2. Lowe, P. A., Clark, T. J., Davies, R. J., Edwards, P. R., Kinning, T., and Yeung, D. (1998) New approaches for the analysis of molecular recognition using the IAsys evanescent wave biosensor. J. Mol. Recog. 11, 194–199.

    CAS  CrossRef  Google Scholar 

  3. Jonsson, U., Fagerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., et al. (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11, 620–627.

    CAS  PubMed  Google Scholar 

  4. Boulton, I. C., Gorringe, A. R., Gorinsky, B., Retzer, M. D., Schryvers, A. B., Joannou, C. L., and Evans, R. W. (1999) Purified meningococcal transferring-binding protein B interacts with a secondary, strain-specific, binding site in the N-terminal lobe of human transferrin. Biochem. J. 339(1), 143–149.

    CAS  CrossRef  PubMed  Google Scholar 

  5. Renauld-Mongenie, G., Latour, M., Poncet, D., Naville, S., and Quentin-Millet, M. J. (1998) Both the full-length and the N-terminal domain of the meningococcal transferrin-binding protein B discriminate between human iron-loaded and apo-transferrin. FEMS Microbiol. Lett. 169, 171–177.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Charalambous, B. M., Evans, J., Feavers, I. M., and Maiden, M. C. (1999) Comparative analysis of two meningococcal immunotyping monoclonal antibodies by resonant mirror biosensor and antibody gene sequencing. Clin. Diagn. Lab Immunol. 6, 838–843.

    CAS  PubMed  Google Scholar 

  7. Christodoulides, M., Brooks, J. L., Rattue, E., and Heckels, J. E. (1998) Immunization with recombinant class 1 outer-membrane protein from Neisseria meningitidis: influence of liposomes and adjuvants on antibody avidity, recognition of native protein and the induction of a bactericidal immune response against meningococci. Microbiology 144(11), 3027–3037.

    CAS  CrossRef  PubMed  Google Scholar 

  8. Pathak, S. S. and Savelkoul, H. F. (1997) Biosensors in immunology: the story so far. Immunol. Today 18, 464–467.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Morgan, C. L., Newman, D. J., and Price, C. P. (1996) Immunosensors: technology and opportunities in laboratory medicine. Clin. Chem. 42(2), 193–209.

    CAS  PubMed  Google Scholar 

  10. Saunal, H., Karlsson, R., and Van Regenmortel, M. H. V. (1997) Antibody affinity measurements, in Immunochemistry 2 (Johnstone, A. P. and Turner, M. W., eds.), Oxford University Press, Oxford, pp. 1–30.

    Google Scholar 

  11. Nieba, L., Krebber, A., and Pluckthun, A. (1996) Competition BIAcore for measuring true affinities: large differences from values determined from binding kinetics. Anal. Biochem. 234, 155–165.

    CAS  CrossRef  PubMed  Google Scholar 

  12. Witholt, B., Boekhout, M., Brock, M., Kingma, J., van Heerikhuizen, H., and de Leij, L. (1976) An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal. Biochem. 74, 160–170.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Poolman, J. T., Kriz Kuzemenska, P., Ashton, F., Bibb, W., Dankert, J., Demina, A., et al. (1995) Serotypes and subtypes of Neisseria meningitidis: results of an international study comparing sensitivities and specificities of monoclonal antibodies. Clin. Diagn. Lab. Immunol. 2, 69–72.

    CAS  PubMed  Google Scholar 

  14. Harlow, E. and Lane, D. (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  15. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    CAS  CrossRef  PubMed  Google Scholar 

  16. Hames, B. D. and Rickwood, D. (eds.) (1998) Gel Electrophoresis of Proteins a Practical Approach Oxford University Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Suker, J., Charalambous, B.M. (2001). Application of Optical Biosensor Techniques to the Characterization of PorA-Antibody Binding Kinetics. In: Pollard, A.J., Maiden, M.C. (eds) Meningococcal Vaccines. Methods in Molecular Medicine™, vol 66. Humana Press. https://doi.org/10.1385/1-59259-148-5:129

Download citation

  • DOI: https://doi.org/10.1385/1-59259-148-5:129

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-801-1

  • Online ISBN: 978-1-59259-148-0

  • eBook Packages: Springer Protocols