Functional Genomics of Mycobacterium tuberculosis Using DNA Microarrays

  • Michael Wilson
  • Martin Voskuil
  • Dirk Schnappinger
  • Gary K. Schoolnik
Part of the Methods in Molecular Medicine book series (MIMM, volume 54)


Completion of the sequence of the entire genome of strain H37Rv was a benchmark for Mycobacterium tuberculosis research (1). This achievement ushers in the era of genome-wide functional and comparative genomics for this organism. At present, the most powerful enabling technology of the postgenomic era is microarray-based hybridization. Microarrays, by whatever means they are fabricated, contain surface-bound representations of each open reading frame (ORF) of a sequenced genome. Thus, they provide a method for parallel sampling of thousands of different genes within a complex pool of nucleic acids. Microarray gene capacity readily accommodates the number of ORFs in the relatively small genomes of bacteria and yeast and, in principle, can accommodate the entire genetic repertoire of complex multicellular animals. Below, we discuss our fabrication and use of an M. tuberculosis microarray, containing representations of each of the identified 3924 ORFs of this organism. We will describe two applications of this method. In the first—microarray-based gene response, i.e., transcript profiling — we ask the question: which genes are selectively expressed under a particular condition of growth, in a particular host compartment or as a result of inhibition of a metabolic or biosynthetic pathway? In the second, comparative genomics, we use a microarray containing the ORFs of one strain or species to identify ORFs deleted or absent from a second strain or species whose genome sequence may not have been determined. In this manner, microarray-based comparative genomics seeks to learn the ORF-by-ORF relatedness of two similar, but nonidentical organisms whose biological differences are under investigation. Examples of each application have been applied to M. tuberculosis (2,3).


Log2 Ratio Succinic Anhydride Wash Solution National Human Genome Research Institute Polymerase Chain Reaction Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Figimejer K., Gas S., Barry C. E., 3rd, Tekaia F., Badeock K., Basham D., Brown D., Chillingworth T., Connor R., Davies R., Devlin K., Feitwell T., Gentles. S., Hamlin N., Hoiroyd S., Hornsby T., Jagels K., Barrell B. G., et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.CrossRefPubMedGoogle Scholar
  2. 2.
    Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., and Small P. M. (1999) Comparative genomics of BCG vaccines by whole genome DNA microarray. Science 284, 1520–1523.CrossRefPubMedGoogle Scholar
  3. 3.
    Wilson M., DeRisi J., Kristensen H. H., Imboden P., Rane S., Brown P. O., and Schoolnik G. K. (1999) Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 96, 12,833–12,838.CrossRefPubMedGoogle Scholar
  4. 4.
    Southern E., Mir K., and Shchepinov M. (1999) Molecular interactions on microarrays. Nat. Genet. 21, 5–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Lipshutz R. J., Fodor S. P., Gingeras T. R., and Lockhart D. J. (1999) High density synthetic oligonucleotide arrays. Nat. Genet. 21, 20–24.CrossRefPubMedGoogle Scholar
  6. 6.
    Schena M., Shalon D., Davis R. W., and Brown P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.CrossRefPubMedGoogle Scholar
  7. 7.
    DeRisi J. L., Iyer V. R., and Brown P. O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686.CrossRefPubMedGoogle Scholar
  8. 8.
    Beier M. and Hoheisel J. D. (1999) Versatile derivatisation of solid support media for covalent bonding on DNA-microchips. Nucleic Acids Res. 27, 1970–1977.CrossRefPubMedGoogle Scholar
  9. 9.
    Duggan D. J., Bittner M., Chen Y., Meltzer P., and Trent J. M. (1999) Expression profiling using DNA microarrays. Nat. Genet. 21, 10–14.CrossRefPubMedGoogle Scholar
  10. 10.
    Mangan J. A., Sole K. M., Mitchison D. A., and Butcher P. D (1997) An effective method of RNA extraction from bacteria refractory to disruption, including mycobacteria. Nucleic Acids Res. 25, 675–676.CrossRefPubMedGoogle Scholar
  11. 11.
    Lockhart D. J., Dong H., Byrne M. C., Follettie M. T., Gallo M. V., Chee M. S., Mittmann M., Wang C., Kobayashi M., Horton H., and Brown E. L. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680.CrossRefPubMedGoogle Scholar
  12. 12.
    Ermolaeva O., Rastogi M., Pruitt K. D., Schuler G. D., Bittner M. L., Chen Y., Simon R., Meltzcr P., Trent J. M., and Boguski M. S. (1998) Data management and analysis for gene expression arrays. Nat. Genet. 20, 19–23.CrossRefPubMedGoogle Scholar
  13. 13.
    Bassett D. B., Jr., Eisen M. B., and Boguski M. S. (1999) Gene expression informatics — it’s all in your mine. Nat. Genet. 21, 51–55.CrossRefPubMedGoogle Scholar
  14. 14.
    Bowtell D. D. (1999) Options available—from start to finish—for obtaining expression data by microarray. Nat. Genet. 21, 25–32.CrossRefPubMedGoogle Scholar
  15. 15.
    Eisen M. B., Speliman P. T., Brown P. O., and Botstein D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14,863–14,868.CrossRefPubMedGoogle Scholar
  16. 16.
    Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E., Lander E. S., and Golub T. R. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907–2912.CrossRefPubMedGoogle Scholar
  17. 17.
    Brown P. O. and Botstein D. (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet. 21, 33–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Steve Rozen H. J. S. (1996, 1997) Primer3. Whitehead Institute for Biomedical Research
  19. 19.
    Toronen P., Kolehmainen M., Wong G., and Castren E., (1999) Analysis of gene expression data using self-organizing maps. FEBS Lett. 451, 142–146.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Michael Wilson
  • Martin Voskuil
  • Dirk Schnappinger
  • Gary K. Schoolnik

There are no affiliations available

Personalised recommendations