Skip to main content

Analysis of Interleukin-2 Signaling Using Affinity Precipitations and Polyacrylamide Gel Electrophoresis

  • Protocol
  • 534 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 60))

Abstract

Interleukin-2 (IL-2) was first discovered and characterized as T-cell growth factor (1). It is responsible for the growth of T cells and thus plays an important role in the proper functioning of the immune system. IL-2 has a high affinity receptor consisting of an α-, β-, and γ-chain. The γ- chain is shared with a number of other cytokines such as IL-3 and IL-7, which also play a role in cell growth (2). The IL-2 receptor β- chain also comprises part of the receptor for IL-15.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Smith, K. A. (1988) Interleukin-2: inception, impact and implications. Science 240, 1169–1176.

    Article  PubMed  CAS  Google Scholar 

  2. Nelson, B. H. and Willerford, D. M. (1998) Biology of the interleukin-2 receptor. Adv. Immunol. 70, 1–81.

    Article  PubMed  CAS  Google Scholar 

  3. Beadling, C., Guschin, D., Witthuhn, B. A., Ziemiecki, A., Ihle, J. N., Kerr, I. M., and Cantrell, D. A. (1994) Activation of JAK kinases and STAT proteins by interleukin-2 and interferon-α, but not the T cell antigen receptor, in human T lymphocytes. EMBO J. 13, 5605–5615.

    PubMed  CAS  Google Scholar 

  4. Johnston, J., Kawamura, M., Kirken, R., Chen, Y., Blake, T., Shibuya, K., et al. (1994) Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature 370, 151–153.

    Article  PubMed  CAS  Google Scholar 

  5. Miyazaki, T., Kawahara, A., Fujii, H., Nakagawa, Y., Minami, Y., Liu, Z.-J., et al. (1994) Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 266, 1045–1047.

    Article  PubMed  CAS  Google Scholar 

  6. Russell, S., Johnston, J., Noguchi, M., Kawamura, M., Bacon, C., Friedman, M., et al. (1994) Interaction of IL-2R β and γ chains with Jak1 and Jak3: implications for XSCID and XCID. Science 266, 1042–1045.

    Article  PubMed  CAS  Google Scholar 

  7. Witthuhn, B., Silvennoinen, O., Miura, O., Lai, K., Cwik, C., Liu, E., and Ihle, J. (1994) Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 370, 153–157.

    Article  PubMed  CAS  Google Scholar 

  8. Fairhurst, R. M., Daeipour, M., Amaral, M. C., and Nel, A. E. (1993) Activation of mitogen-activated protein kinase/ERK-2 in phytohaemagglutin in blasts by recombinant interleukin-2: contrasting features with CD3 activation. Immunology 79, 112–118.

    PubMed  CAS  Google Scholar 

  9. Izquierdo, M., Leevers, S. J., Williams, D. H., Marshall, C. J., Weiss, A., and Cantrell, D. A. (1994) The role of protein kinase C in the regulation of extra cellular signal regulated kinase by the T cell antigen receptor. Eur. J. Immunol. 24, 2462–2468.

    Article  PubMed  CAS  Google Scholar 

  10. Turner, B., Rapp, U., App, H., Greene, M., Dobashi, K., and Reid, J. (1991) Interleukin-2 induces tyrosine phosphorylation and activation of p72-74 Raf-1 kinase in a T cell line. Proc. Natl. Acad. Sci. USA 88, 1227–1232.

    Article  PubMed  CAS  Google Scholar 

  11. Lin, J.-X., Migone, T.-S., Tsang, M., Friedmann, M., Weatherbee, J. A., Zhou, L., et al. (1995) The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2, 331–339.

    Article  PubMed  CAS  Google Scholar 

  12. Hou, J., Schindler, U., Henzel, W. J., Wong, S. C., and McKnight, S. L. (1995) Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity 2, 321–329.

    Article  PubMed  CAS  Google Scholar 

  13. Johnston, J. A., Bacon, C. M., Finbloom, D. S., Rees, R. C., Kaplan, D., Shibuya, K., et al. (1995) Tyrosine phosphorylation and activation of Stat5, Stat3, and Janus kinases by interleukin-2 and interleukin-15. Proc. Natl. Acad. Sci. USA 92, 8705–8709.

    Article  PubMed  CAS  Google Scholar 

  14. Beadling, C., Ng, J., Babbage, J. W., and Cantrell, D. A. (1996) Interleukin-2 activation of STAT5 requires the convergent action of tyrosine kinases and a serine/threonine kinase distinct from the Raf-1/Erk2 MAP kinase pathway. EMBO J. 15, 1902–1913.

    PubMed  CAS  Google Scholar 

  15. Remillard, B., Petrillo, R., Maslinski, W., Tsudo, M., Strom, T. B., Cantley, L., and Varticovski, L. (1991) Interleukin-2 receptor regulates activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 266, 14,167–14,170.

    PubMed  CAS  Google Scholar 

  16. Reif, K., Burgering, B. M. T., and Cantrell, D. A. (1997) Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J. Biol. Chem. 272, 14,426–14,438.

    Article  PubMed  CAS  Google Scholar 

  17. Franke, T. F., Kaplan, D. R., Cantley, L. C., and Toker, A. (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665–668.

    Article  PubMed  CAS  Google Scholar 

  18. Datta, K., Bellacosa, A., Chan, T. O., and Tsichlis, P. N. (1996) Akt is a direct target of the phosphatidylinositol 3-kinase. J. Biol. Chem. 271, 30,835–30,839.

    Article  PubMed  CAS  Google Scholar 

  19. Kozma, S. C. and Thomas, G. (1994) p70s6k/p85s6k: mechanism of activation and role in mitogenesis. Semin. Cancer. Biol. 5, 255–260.

    PubMed  CAS  Google Scholar 

  20. Han, J. W., Pearson, R. B., Dennis, P. B., and Thomas, G. (1995) Rapamycin, wortmannin, and the methylxanthine SQ20006 inactivate p70s6k by inducing dephosphorylation of the same subset of sites. J. Biol. Chem. 270, 21,396–21,403.

    Article  PubMed  CAS  Google Scholar 

  21. Turner, H., Reif, K., Rivera, J., and Cantrell, D. A. (1995) Regulation of the adapter molecule Grb2 by the FceR1 in the mast cell line RBL2H3. J. Biol. Chem. 270, 9500–9506.

    Article  PubMed  CAS  Google Scholar 

  22. Brennan, P., Babbage, J. W., Burgering, B. M. T., Groner, B., Reif, K., and Cantrell, D. A. (1997) Phosphatidylinositol 3-kinase controls E2F transcriptional activity in response to interleukin-2. Immunity 7, 679–689.

    Article  PubMed  CAS  Google Scholar 

  23. Ng, J. and Cantrell, D. A. (1997) STAT3 is a target for multiple serine kinases in T cells; integrating interleukin2 and T cell antigen receptor signals. J. Biol. Chem. 272, 24,542–24,549.

    Google Scholar 

  24. Watton, S. J. (1999) Akt/PKB localisation and 3’phosphoinositide generation at sites of epithelial cell-matrix and cell-cell interaction. Curr. Biol. 9, 433–436.

    Article  PubMed  CAS  Google Scholar 

  25. David, M., Petricoin, E. III, Benjamin, C., Pine, R., Weber, M. J., and Larner, A. C.(1995) Requirement for MAP kinase (ERK2) activity in interferon α-and interferon β-stimulated gene expression through STAT proteins. Science 269, 1721–1723.

    Article  PubMed  CAS  Google Scholar 

  26. Wen, Z. and Darnell, J. E., Jr. (1997) Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res. 25, 2062–2067.

    Article  PubMed  CAS  Google Scholar 

  27. Taylor, S. J. and Shalloway, D. (1996) Cell cycle-dependent activation of Ras. Curr. Biol. 6, 1621–1627.

    Article  PubMed  CAS  Google Scholar 

  28. Rommel, C. and Hafen, E. (1998) Ras—a versatile cellular switch. Curr. Opin. Gen. Dev. 8, 412–418.

    Article  CAS  Google Scholar 

  29. Larner, A. C., David, M., Feldman, G. M., Igarashi, K., Hackett, R. H., Webb, D. S. A., et al. (1993) Tyrosine phosphorylation of DNA binding proteins by multiple cytokines. Science 261, 1730–1733.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Brennan, P., Athié-Morales, V. (2001). Analysis of Interleukin-2 Signaling Using Affinity Precipitations and Polyacrylamide Gel Electrophoresis. In: O’Neill, L.A.J., Bowie, A. (eds) Interleukin Protocols. Methods in Molecular Medicine™, vol 60. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-146-9:369

Download citation

  • DOI: https://doi.org/10.1385/1-59259-146-9:369

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-738-0

  • Online ISBN: 978-1-59259-146-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics