Analysis of Interleukin-2 Signaling Using Affinity Precipitations and Polyacrylamide Gel Electrophoresis

  • Paul Brennan
  • VerÓnica Athié-Morales
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 60)

Abstract

Interleukin-2 (IL-2) was first discovered and characterized as T-cell growth factor (1). It is responsible for the growth of T cells and thus plays an important role in the proper functioning of the immune system. IL-2 has a high affinity receptor consisting of an α-, β-, and γ-chain. The γ- chain is shared with a number of other cytokines such as IL-3 and IL-7, which also play a role in cell growth (2). The IL-2 receptor β- chain also comprises part of the receptor for IL-15.

Keywords

Glycerol Acetone DMSO Tyrosine Glycine 

References

  1. 1.
    Smith, K. A. (1988) Interleukin-2: inception, impact and implications. Science 240, 1169–1176.PubMedCrossRefGoogle Scholar
  2. 2.
    Nelson, B. H. and Willerford, D. M. (1998) Biology of the interleukin-2 receptor. Adv. Immunol. 70, 1–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Beadling, C., Guschin, D., Witthuhn, B. A., Ziemiecki, A., Ihle, J. N., Kerr, I. M., and Cantrell, D. A. (1994) Activation of JAK kinases and STAT proteins by interleukin-2 and interferon-α, but not the T cell antigen receptor, in human T lymphocytes. EMBO J. 13, 5605–5615.PubMedGoogle Scholar
  4. 4.
    Johnston, J., Kawamura, M., Kirken, R., Chen, Y., Blake, T., Shibuya, K., et al. (1994) Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature 370, 151–153.PubMedCrossRefGoogle Scholar
  5. 5.
    Miyazaki, T., Kawahara, A., Fujii, H., Nakagawa, Y., Minami, Y., Liu, Z.-J., et al. (1994) Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 266, 1045–1047.PubMedCrossRefGoogle Scholar
  6. 6.
    Russell, S., Johnston, J., Noguchi, M., Kawamura, M., Bacon, C., Friedman, M., et al. (1994) Interaction of IL-2R β and γ chains with Jak1 and Jak3: implications for XSCID and XCID. Science 266, 1042–1045.PubMedCrossRefGoogle Scholar
  7. 7.
    Witthuhn, B., Silvennoinen, O., Miura, O., Lai, K., Cwik, C., Liu, E., and Ihle, J. (1994) Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 370, 153–157.PubMedCrossRefGoogle Scholar
  8. 8.
    Fairhurst, R. M., Daeipour, M., Amaral, M. C., and Nel, A. E. (1993) Activation of mitogen-activated protein kinase/ERK-2 in phytohaemagglutin in blasts by recombinant interleukin-2: contrasting features with CD3 activation. Immunology 79, 112–118.PubMedGoogle Scholar
  9. 9.
    Izquierdo, M., Leevers, S. J., Williams, D. H., Marshall, C. J., Weiss, A., and Cantrell, D. A. (1994) The role of protein kinase C in the regulation of extra cellular signal regulated kinase by the T cell antigen receptor. Eur. J. Immunol. 24, 2462–2468.PubMedCrossRefGoogle Scholar
  10. 10.
    Turner, B., Rapp, U., App, H., Greene, M., Dobashi, K., and Reid, J. (1991) Interleukin-2 induces tyrosine phosphorylation and activation of p72-74 Raf-1 kinase in a T cell line. Proc. Natl. Acad. Sci. USA 88, 1227–1232.PubMedCrossRefGoogle Scholar
  11. 11.
    Lin, J.-X., Migone, T.-S., Tsang, M., Friedmann, M., Weatherbee, J. A., Zhou, L., et al. (1995) The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2, 331–339.PubMedCrossRefGoogle Scholar
  12. 12.
    Hou, J., Schindler, U., Henzel, W. J., Wong, S. C., and McKnight, S. L. (1995) Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity 2, 321–329.PubMedCrossRefGoogle Scholar
  13. 13.
    Johnston, J. A., Bacon, C. M., Finbloom, D. S., Rees, R. C., Kaplan, D., Shibuya, K., et al. (1995) Tyrosine phosphorylation and activation of Stat5, Stat3, and Janus kinases by interleukin-2 and interleukin-15. Proc. Natl. Acad. Sci. USA 92, 8705–8709.PubMedCrossRefGoogle Scholar
  14. 14.
    Beadling, C., Ng, J., Babbage, J. W., and Cantrell, D. A. (1996) Interleukin-2 activation of STAT5 requires the convergent action of tyrosine kinases and a serine/threonine kinase distinct from the Raf-1/Erk2 MAP kinase pathway. EMBO J. 15, 1902–1913.PubMedGoogle Scholar
  15. 15.
    Remillard, B., Petrillo, R., Maslinski, W., Tsudo, M., Strom, T. B., Cantley, L., and Varticovski, L. (1991) Interleukin-2 receptor regulates activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 266, 14,167–14,170.PubMedGoogle Scholar
  16. 16.
    Reif, K., Burgering, B. M. T., and Cantrell, D. A. (1997) Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J. Biol. Chem. 272, 14,426–14,438.PubMedCrossRefGoogle Scholar
  17. 17.
    Franke, T. F., Kaplan, D. R., Cantley, L. C., and Toker, A. (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665–668.PubMedCrossRefGoogle Scholar
  18. 18.
    Datta, K., Bellacosa, A., Chan, T. O., and Tsichlis, P. N. (1996) Akt is a direct target of the phosphatidylinositol 3-kinase. J. Biol. Chem. 271, 30,835–30,839.PubMedCrossRefGoogle Scholar
  19. 19.
    Kozma, S. C. and Thomas, G. (1994) p70s6k/p85s6k: mechanism of activation and role in mitogenesis. Semin. Cancer. Biol. 5, 255–260.PubMedGoogle Scholar
  20. 20.
    Han, J. W., Pearson, R. B., Dennis, P. B., and Thomas, G. (1995) Rapamycin, wortmannin, and the methylxanthine SQ20006 inactivate p70s6k by inducing dephosphorylation of the same subset of sites. J. Biol. Chem. 270, 21,396–21,403.PubMedCrossRefGoogle Scholar
  21. 21.
    Turner, H., Reif, K., Rivera, J., and Cantrell, D. A. (1995) Regulation of the adapter molecule Grb2 by the FceR1 in the mast cell line RBL2H3. J. Biol. Chem. 270, 9500–9506.PubMedCrossRefGoogle Scholar
  22. 22.
    Brennan, P., Babbage, J. W., Burgering, B. M. T., Groner, B., Reif, K., and Cantrell, D. A. (1997) Phosphatidylinositol 3-kinase controls E2F transcriptional activity in response to interleukin-2. Immunity 7, 679–689.PubMedCrossRefGoogle Scholar
  23. 23.
    Ng, J. and Cantrell, D. A. (1997) STAT3 is a target for multiple serine kinases in T cells; integrating interleukin2 and T cell antigen receptor signals. J. Biol. Chem. 272, 24,542–24,549.Google Scholar
  24. 24.
    Watton, S. J. (1999) Akt/PKB localisation and 3’phosphoinositide generation at sites of epithelial cell-matrix and cell-cell interaction. Curr. Biol. 9, 433–436.PubMedCrossRefGoogle Scholar
  25. 25.
    David, M., Petricoin, E. III, Benjamin, C., Pine, R., Weber, M. J., and Larner, A. C.(1995) Requirement for MAP kinase (ERK2) activity in interferon α-and interferon β-stimulated gene expression through STAT proteins. Science 269, 1721–1723.PubMedCrossRefGoogle Scholar
  26. 26.
    Wen, Z. and Darnell, J. E., Jr. (1997) Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res. 25, 2062–2067.PubMedCrossRefGoogle Scholar
  27. 27.
    Taylor, S. J. and Shalloway, D. (1996) Cell cycle-dependent activation of Ras. Curr. Biol. 6, 1621–1627.PubMedCrossRefGoogle Scholar
  28. 28.
    Rommel, C. and Hafen, E. (1998) Ras—a versatile cellular switch. Curr. Opin. Gen. Dev. 8, 412–418.CrossRefGoogle Scholar
  29. 29.
    Larner, A. C., David, M., Feldman, G. M., Igarashi, K., Hackett, R. H., Webb, D. S. A., et al. (1993) Tyrosine phosphorylation of DNA binding proteins by multiple cytokines. Science 261, 1730–1733.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Paul Brennan
    • 1
  • VerÓnica Athié-Morales
    • 2
  1. 1.Department of MedicineUniversity of Wales College of MedicineWales, UK
  2. 2.Lymphocyte Activation Laboratory, Imperial Cancer Research FundLondonUK

Personalised recommendations