Quantitation of Cytokine mRNA by Flash-Type Bioluminescence

  • Jeffrey K. Actor
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 60)


Cytokines produced by a variety of cells in response to stimuli are important in the regulation of physiologic and immunologic processes; tremendous efforts have been made to study cytokine profiles in various physiologic and disease conditions. Bioluminescent reverse transcription polymerase chain reaction (BL RT-PCR) has been especially useful for the quantitation of cytokine mRNA during parasitic infections (1, 2, 3, 4, 5, 6, 7, 8). RT-PCR has the advantage of target amplification, requiring only small amounts of RNA (9). By combining the advantages of RT-PCR with the sensitivity, stability, and the unique properties of the photoprotein aequorin, the bioluminescent system becomes an obvious alternate choice for analytic applications of cytokine RT-PCR.


Cytokine mRNA Relative Light Unit Neutralization Buffer Capture Assay Microplate Luminometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Actor, J. K., Olsen, M., Boven, L. A., Werner, N., Stults, N. L., Hunter, R. L., and Smith, D. F. (1996) A bioluminescent assay using AquaLite for RT-PCR Amplified RNA from mouse lung. J. NIH Res. 8, 62.Google Scholar
  2. 2.
    Actor, J. K., Kuffner, T., Dezzutti, C. S., Hunter, R. L., and McNicholl, J. M.(1998) A flash-type bioluminescence immunoassay that is more sensitive thanradioimaging: quantitative detection of cytokine cDNA in activated and restinghuman cells. J. Immunol. Methods 211, 65–77.PubMedCrossRefGoogle Scholar
  3. 3.
    Actor, J. K., Limor, J. R., and Hunter, R. L. (1999) A flexible bioluminescent-quantitative polymerase chain reaction assay for analysis of competitive PCRamplicons. J. Clin. Lab. Anal. 13, 40–47.PubMedCrossRefGoogle Scholar
  4. 4.
    Jagannath, C., Actor, J. K., and Hunter, R. L. (1998) Induction of nitric oxide inhuman monocytes and monocyte cell lines by Mycobacterium tuberculosis. Nitric Oxide 2, 174–186.CrossRefGoogle Scholar
  5. 5.
    Jagannath, C., Pai, S., Actor, J. K., and Hunter, R. L., Jr. (1999) CRL-1072 enhancesantimy cob acterial activity of human macrophages through interleukin-8. J. Inter-feron Cytokine Res. 19, 67–76.CrossRefGoogle Scholar
  6. 6.
    Xiao, L., Yang, C., Nelson, C. O., Holloway, B. P., Udhayakumar, V., and Lal, A. A. (1996) Quantitation of RT-PCR amplified cytokine mRNA by aequorin-based bioluminescence immunoassay. J. Immunol. Methods 199, 139–147.PubMedCrossRefGoogle Scholar
  7. 7.
    Xiao, L., Owen, S. M., Rudolph, D. L., Lal, R. B., and Lal, A. A. (1998) Plasmo-diumfalciparum antigen-induced human immunodeficiency virus type 1 replicationis mediated through induction of tumor necrosis factor-alpha. J. Infect. Dis. 177, 437–445.PubMedCrossRefGoogle Scholar
  8. 8.
    Jennings, V. M., Actor, J. K., and Hunter, R. L. (1997) Cytokine profile suggestingthat cerebral malaria is an encephalitis. Infect. Immun. 65, 4883–4887.PubMedGoogle Scholar
  9. 9.
    Babu, J. S., Kanangat, S., and Rouse, B. T. (1993) Limitations and modificationsof quantitative polymerase chain reaction. Application to measurement of multiplemRNAs present in small amounts of sample RNA. J. Immunol. Methods 165, 207–216.PubMedCrossRefGoogle Scholar
  10. 10.
    Siddiqi, A., Jennings, V. M., Kidd, M. R., Actor, J. K., and Hunter, R. L. (1996) Evaluation of electrochemiluminescence and bioluminescence based assays forquantitating specific DNA. J. Clin. Lab. Anal. 10, 423–431.PubMedCrossRefGoogle Scholar
  11. 11.
    Yang, B., Yolken, R., and Viscidi, R. (1993) Quantitative polymerase chain reactionby monitoring enzymatic activity of DNA polymerase. Anal. Biochem. 208, 110–116.PubMedCrossRefGoogle Scholar
  12. 12.
    Shimomura, O. and Johnson, F. H. (1962) Extraction, purification and propertiesof aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59, 223–240.CrossRefGoogle Scholar
  13. 13.
    Shimomura, O. and Johnson, F. H. (1969) Properties of the bioluminescent proteinaequorin. Biochemistry 8, 3991–3997.PubMedCrossRefGoogle Scholar
  14. 14.
    Shimomura, O. and Johnson, F. H. (1975) Regeneration of the photoproteinaequorin. Nature 256, 236–238.PubMedCrossRefGoogle Scholar
  15. 15.
    Cormier, M. J., Prasher, D. C., Longiaru, M., and McCann, R. (1989) Theenzymology and molecular biology of the Ca2+-activated photoprotein, aequorin. Photochem. Photobiol. 49, 509–512.PubMedCrossRefGoogle Scholar
  16. 16.
    Stults, N. L., Rivera, H. N., Ball, R. T., and Smith, D. F. (1995) Bioluminescenthybridization immunoassays for digoxigenin-labeled PCR products based onAquaLite, a calcium-activated photoprotein. J. NIH Res. 7, 74.Google Scholar
  17. 17.
    Smith, D. F., Stults, N. L., and Mercer, W. D. (1995) Bioluminescent immunoassays using streptavidin and biotin conjugates of recombinant Aequorin. Am. Biotechnol. Lab. 14, 17–18.Google Scholar
  18. 18.
    Wynn, T.A., Eltoum, I., Cheever, A. W., Lewis, F. A., Gause, W. C., and Sher, A.(1993) Analysis of cytokine mRNA expression during primary granuloma formation induced by eggs of Schistosoma mansoni. J. Immunol. 151, 1430–1440.PubMedGoogle Scholar
  19. 19.
    Innis, M. A., Felfand, D. H., Sninsky, J. J., and White, T.J., eds. (1990) PCRProtocols: A Guide to Methods and Applications, Academic, San Diego, CA.Google Scholar
  20. 20.
    White, B. A. (1993) PCR protocols: current methods and applications, in Methodsin Molecular Biology, vol. 15. Humana, Totowa, NJ, pp. 1–392.Google Scholar
  21. 21.
    Stults, N. L., Stocks, N. F., Rivera, H. N., Gray, J., McCann, R. O., O′Kane, D., et al. (1992) Use of recombinant biotinylated Aequorin in microtiter and membrane-based assays: purification of recombinant apoaequorin from Escherichia coli. Biochemistry 31, 1432–1442.CrossRefGoogle Scholar
  22. 22.
    Stults, N. L., Rivera, H. N., Burke-Payne J., Ball, R. T., and Smith, D. F. (1997) Preparation of stable conjugates of recombinant aequorin with proteins and nucleicacids, in Bioluminescence and Chemiluminescence: Molecular Reporting with Photons (Hastings, J. W., Kricka, L. J., and Stanley, P. E., eds.), John Wiley & Sons, Chichester, UK, pp. 423–426.Google Scholar
  23. 23.
    Smith, D. F., Stults, N. L., Cormier, M. J., and Actor, J. K. (1999) RecombinantAequorin, A Bioluminescent Signal for Molecular Diagnostics. J. Clin. Ligand Assay 22, 158–172.Google Scholar
  24. 24.
    Flannagan, K., Sanchez-Brambila, G., Barnes, C., Rivera, H., Scheuer, B., Stults, N. L., et al. (1993) A study of the stability of AquaLite (recombinant aequorin)lyophilized and in solution in various buffers, in Bioluminescence and Chemiluminescence: Current Status (Stanley P. and Kricka, L., eds.), John Wiley & Sons, Chichester, UK, pp. 60–63.Google Scholar
  25. 25.
    Kricka, L. J. (1991) Chemiluminescent and bioluminescent techniques. Clin. Chem. 37, 1472–1481.PubMedGoogle Scholar
  26. 26.
    Kricka, L. J. (1993) Ultrasensitive immunoassay techniques. Clin. Biochem. 26, 325–331.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Jeffrey K. Actor
    • 1
  1. 1.Program in Molecular PathologyUniversity of Texas-Houston Medical SchoolHouston

Personalised recommendations