Skip to main content

Abstract

The identification of genes involved in different biologic functions and in the pathogenesis of diseases has paved the way to the possibility of either interfering with the role of such genes or replacing them in somatic cells in case of loss, which may occur in some genetic diseases or cancer. Such progress has been accomplished thanks to advances in molecular biology and applied technology that allow the transport and insertion of genes into recipient cells by viral or physical vectors as well as the inhibition of gene transcription by antisense oligonucleotides. Methods have also been devised to transfer genes not only in vitro but also in vivo, although this latter approach is still limited owing to poor selectivity and targeting of most vectors when given systemically. Viral and physical vectors have been employed; each of these vectors has distinct advantages and disadvantages, and, therefore, the appropriate vector should be selected according to the therapeutic system involved (1). Retro viral vectors have been used largely for their ability to selectively transfect proliferating cells, a feature that can be advantageous in case one wishes to target only proliferating tumor cells. Owing to the heterogeneous proliferation rate in different parts of a tumor, however, it could be desirable, under some circumstances, to be able to target even the fraction of nonproliferating tumor cells. This can now be obtained by the use of lentivirus (2) or by switching to the use of adenoviruses that can target both dividing and quiescent cells but also induce unwanted inflammmatory reactions from the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caplen, N. J. (1998) Gene therapy: different strategies for different applications. Mol. Med. Today 5, 374,375.

    Google Scholar 

  2. Verma, I. M. and Somia, N. (1997) Gene therapy: Promises, problems and prospects. Nature 389, 239–242.

    Article  PubMed  CAS  Google Scholar 

  3. Parmiani, G. (1998) Editorial. Immunological approach to gene therapy of human cancer: improvements through the understanding of mechanism(s). Gene Ther. 5, 863,864.

    Article  Google Scholar 

  4. Nguyen, J. T., Wu, P., Clouse, M. E., Hlatky, L., and Terwillinger, F. (1998) Adeno-associated virus-mediated delivery of antiangiogenic factors as an antitu-mor strategy. Cancer Res. 58, 5673–5677.

    PubMed  CAS  Google Scholar 

  5. Meier, F., Satyamoorthy, K., Nesbit, M., Hsu, M.-Y., Schittek, B., Garbe, C., and Herlyn, M. (1998) Molecular events in melanoma development and progression Front. Biosci. 3, 1005–1010.

    Google Scholar 

  6. Jäger, E., Ringhoff, M., Karbach, J., Arand, M., Oesch, F., and Knuth, A. (1996) Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+cytotoxic T cell response: evidence for immunoselection of antigen-loss variants in vivo. Int. J. Cancer 66, 470–476.

    Article  PubMed  Google Scholar 

  7. Brasseur, F., Rimoldi, D., Liénard, D., et al. (1995) Expression of MAGE genes in primary and metastatic cutaneous melanoma. Int. J. Cancer 63, 375–380.

    Article  PubMed  CAS  Google Scholar 

  8. Anichini, A., Molla, A., Mortarini, R., Tragni, G., Bersani, I., Di Nicola, M., Gianni, A. M., Pilotti, S., Dunbar, R., Cerundolo, V., and Parmiani, G. (1999) An expanded peripheral T cell population to a CTL-defined melanocyte-specific antigen in metastatic melanoma patients impact on generation of peptide-specific CTL, but does not overcome tumor escape from immune surveillance in metastatic lesions. J. Exp. Med. 190, 651–667.

    Article  PubMed  CAS  Google Scholar 

  9. Musiani, P., Modesti, A., Giovarelli, M., Cavallo, F., Colombo, M. P., Lollini, P. L., and Forni, G. (1997) Cytokines, tumour-cell death and immunogenicity: a question of choice. Immunol. Today 18, 32–36.

    Article  PubMed  CAS  Google Scholar 

  10. Parmiani, G., Colombo, M. P., Melani, C., and Arienti, F. (1997) Cytokine gene transduction in the immunotherapy of cancer. Adv. Pharmacol. 40, 259–307.

    Article  PubMed  CAS  Google Scholar 

  11. Stewart, A. K., Lassam, N. J., Quirt, I. C., et al. (1999) Adenovector-mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: results of a phase 1 clinical trial. Gene Ther. 6, 350–363.

    Article  PubMed  CAS  Google Scholar 

  12. Palmer, K., Moore, J., Everard, M., et al. (1999) Gene therapy with autologous, interleukin 2-secreting tumor cells in patients with malignant melanoma. Hum. Gene Ther. 10, 1261–1268.

    Article  PubMed  CAS  Google Scholar 

  13. Schreiber, S., Kampgen, E., Wagner, E., et al. (1999) Immunotherapy of metastatic malignant melanoma by a vaccine consisting of autologous in 2-transfected cancer cells: outcome of a phase I study. Hum. Gene Ther. 10, 983–993.

    Article  PubMed  CAS  Google Scholar 

  14. Galanis, E., Hersh, E. M., Stopeck, A. T., et al. (1999) Immunotherapy of advanced malignancy by direct gene transfer of an interleukin-2 DNA/DMRIE/ DOPE lipid complex: phase I/II experience. J. Clin. Oncol. 17, 3313–3323.

    PubMed  CAS  Google Scholar 

  15. Moller, P., Sun, Y., Dorbic, T., Alijagic, S., Makki, A., Jurgovsky, K., Schroff, M., Henz, B. M., Wittig, B., and Schadendorf, D.(1998) Vaccination with IL-7 gene-modified autologous melanoma cells can enhance the anti-melanoma lytic activity in peripheral blood of patients with a good clinical performance st clinical phase I study. Br. J. Cancer 77, 1907–1916.

    Article  PubMed  CAS  Google Scholar 

  16. Sun, Y., Jurgovsky, K., Moller, P., Alijagic, S., Dorbic, T., Georgieva, J., Wittig, B., and Schadendorf, D. (1998) Vaccination with IL-12 gene-modified autologous melanoma cells: preclinical results and a first clinical phase I study. Gene Ther. 5, 481–490.

    Article  PubMed  CAS  Google Scholar 

  17. Nemunaitis, J., Fong, T., Robbins, J. M., Edelman, G., Edwards, W., Paulson, R. S., Bruce, J., Ognoskie, N., Wynne, D., Pike, M., Kowal, K., Merritt, J., and Ando, D. (1999) Phase I trial of interferon-gamma (IFN-y) retro viral vector administered intratumorally to patients with metastatic melanoma. Cancer Gene Ther. 6, 322–330.

    Article  PubMed  CAS  Google Scholar 

  18. Nemunaitis, J., Bohart, C., Fong, T., Burrows, F., Bruce, J., Peters, G., Ognoskie, N., Meyer, W., Wynne, D., Kerr, R., Pippen, J., Oldham, F., and Ando, D. (1998) Phase I trial of interferon-gamma retroviral vector administered intratumorally with multiple courses in patients with metastatic melanoma. Hum. Gene Ther. 10, 1289–1298.

    Article  Google Scholar 

  19. Soiffer, R., Lynch, T., Mihm, M., et al. (1998) Vaccination with irradiated auto-logous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 95, 13,141–13,146.

    Article  PubMed  CAS  Google Scholar 

  20. Mastrangelo, M. J., Maguire, H. C. Jr., Eisenlohr, L. C., Laughlin, C. E., Monken, C. E., McCue, P. A., Kovatich, A. J., and Lattime, E. C. (1999) Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 6, 409–422.

    Article  PubMed  CAS  Google Scholar 

  21. Belli, F., Arienti, F., Cascinelli, N., and Parmiani, G. (1997) Active immunization of metastatic melanoma patients with interleukin-2-transduced allogeneic melanoma cells: evaluation of efficacy and tolerability. Cancer Immunol 44, 197–203.

    Article  CAS  Google Scholar 

  22. Arienti, F., Belli, F., Cascinelli, N., Napolitano, F., Sulé-Suso, J., Mazzocchi, A., Gallino, G. F., Cattelan, A., Sanantonio, C., Rivoltini, L., Melani, C., Colombo, M. P., Cascinelli, N., Maio, M., and Parmiani, G. (1999) Vaccination of melanoma patients with IL-4 gene-transduced allogeneic melanoma cells. H Ther., 10, 2907–2916.

    Article  CAS  Google Scholar 

  23. Nabel, G. J., Nabel, E. G., Yang, Z.-Y., Fox, B. A., Plautz, G. E., Gao, X., Huang, L., Shu, S., Gordon, D., and Chang, A. E. (1993) Direct gene transfer with DNA-liposome complexes in melanoma:expression, biologic activity, and lack of toxicity in humans. Proc. Natl. Acad. Sci. USA 90, 11,307–11,311.

    Article  PubMed  CAS  Google Scholar 

  24. Stopeck, A. T., Hersh, E. M., Akporiaye, E. T., Harris, D. T., Grogan, T., Unger, E., Warnecke, J., Schluter, S. F., and Stahl, S. (1997) Phase I study of direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7, in patients with metastatic melanoma. J. Clin. Oncol. 15, 341–349.

    PubMed  CAS  Google Scholar 

  25. Hui, K. M., Ang, P. T., Huang, L., and Tay, S. K. (1997) Phase I study of immu-notherapy of cutaneous metastases of human carcinoma using allogeneic and xenogeneic MHC DNA-liposome complexes. Gene Ther. 4, 783–790.

    Article  PubMed  CAS  Google Scholar 

  26. Rosenberg, S. A., Zhai, Y., Yang, J. C., Schwartzentruber, D. J., Hwu, P., Marincola, F.M., Topalian, S. L., Restifo, N. P., Seipp, C. A., Einhorn, J. H., Roberts, B., and White, D. E. (1998) Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J. Natl. Cancer Inst. USA 90, 1894–1900.

    Article  CAS  Google Scholar 

  27. Rochlitz, C., Jantscheff, P., Bongartz, G., Dietrich, P. Y., Quinquerez, A. L., Schatz, C., Mehtali, M., Courtney, M., Tartour, E., Dorval, T., Fridman, W. H., and Herrmann, R. (1999) Gene therapy study of cytokine-transfected xenogeneic cells (Vero-interleukin-2) in patients with metastatic solid tumors. Cancer Gene Ther. 6, 271–281.

    Article  PubMed  CAS  Google Scholar 

  28. Klatzmann, D., Cherin, P., Bensimon, G., Boyer, O., Coutellier, A., Charlotte, F., Boccaccio, C., Salzmann, J. L., and Herson, S. (1998) A phase I/II dose-escalation study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for metastatic melanoma. Hum. Gene Ther. 9, 2585–2594.

    Article  PubMed  CAS  Google Scholar 

  29. Liu, Y. and Linsey, P. S. (1992) Costimulation of T cell growth. Curr. Op. Immunol. 4, 265–270.

    Article  CAS  Google Scholar 

  30. Sulé-Suso, J., Arienti, F., Melani, C., Colombo, M. P., and Parmiani, G.(1995) A B7-1 transfected human melanoma line stimulates proliferation and cytotoxic-ity of autologous and allogeneic lymphocytes. Eur. J. Immunol. 25, 2737–2742.

    Article  PubMed  Google Scholar 

  31. Towsend, S. E. and Allison, J. P. (1993) Tumor rejection after direct costimulation of CD28+ T cells by B7-transfected melanoma cells. Science 259, 368–370.

    Article  Google Scholar 

  32. Veelken, H., Mackensen, A., Lahn, M., et al. (1997) A phase I clinical study of autologos tumor cells plus interleukin-2-gene-transfected allogeneic fibroblasts as a vaccine in patients with cancer. Int. J. Cancer 70, 269–277.

    Article  PubMed  CAS  Google Scholar 

  33. Siena, S., Di Nicola, M., Bregni, M., Mortarini, R., Anichini, A., Lombardi, L., Ravagnani, F., Parmiani, G., and Gianni, A. M. (1995) Massive ex-vivo generation of functional dendritic cells from mobilized CD34+ blood progenitors for anticancer therapy. Exp. Hematol. 23, 1463–1471.

    PubMed  CAS  Google Scholar 

  34. Tuting, T., Wilson, C., Martin, D. M., Kasamon, Y. L., Rowles, J., Ma, D. I., Slingluff, C. L. Jr., Wagner, S. N., van der Bruggen, P., Baar, J., Lotze, M. T., and Storkus, W. J. (1998) Autologous human monocyte-derived dendritic cells genetically modified to expressed melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by co-transfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-α. J. Immunol. 160, 1139–1147.

    PubMed  CAS  Google Scholar 

  35. Melcher, A., Todryk, S., Hardwick, N., Ford, M., Jacobson, M., and Vile, R. G. (1998) Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat. Med. 4, 581–587.

    Article  PubMed  CAS  Google Scholar 

  36. Parkinson, D. R., Abrams, J. S., Wiernik, P. H., Rayner, A. A., Margolin, K. A., Van Echo, D. A., Sznol, M., Dutcher, J. P., Aronson, F. R., Doroshow, J. H., Atkins, M. B., and Hawkins, M. J. (1990) Interleukin-2 therapy in patients with metastatic malignant melanoma: a phase II study. J. Clin. Oncol. 8, 1650–1656.

    PubMed  CAS  Google Scholar 

  37. Rosenberg, S. A., Yannelli, J. R., Yang, J. C., Topalian, S. L., Schwartzentruber, D. J., Weber, J. S., Parkinson, D. R., Seipp, C. A., Einhorn, J. H., and White, D. E. (1994) Treatment of patients with metastatic melanoma with tumor-infiltrating lymphocytes. J. Natl. Cancer Inst. USA 86, 1159–1166.

    Article  CAS  Google Scholar 

  38. Merrouche, Y., Negrier, S., Bain, C., Combaret, V., Mercatello, A., Coronel, B., Moskovitchenko, J.-F., Tolstoshev, P., Moen, R., Philip, T., and Favrot, M. C. (1995) Clinical application of retro viral gene transfer in oncology: results of a French study with tumor-infiltrating lymphocytes transduced with the gene of resistance to neomycin. J. Clin. Oncol. 13, 410–418.

    PubMed  CAS  Google Scholar 

  39. Eshhar, Z., Waks, T., Gross, G., and Schindler, D. (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody binding domain and the gamma or zeta subunit of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 90, 720–724.

    Article  PubMed  CAS  Google Scholar 

  40. Hwu, P., Yang, J. C., Cowherd, R., Treisman, J., Shafer, G. E., Eshhar, Z., and Rosenberg, S. A. (1995) In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res. 55, 3369–3373.

    PubMed  CAS  Google Scholar 

  41. Clay, T. M., Custer, M. C., Sachs, J., Hwu, P., Rosenberg, S. A., and Nishimura, M. I. (1999) Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J. Immunol. 163, 507–513.

    PubMed  CAS  Google Scholar 

  42. Maccalli, C., Farina, C., Sensi, M., Parmiani, G., and Anichini, A. (1997) TCR β-chain variable region-driven selection and massive expansion of HLA-class I-restricted antitumor CTL lines from HLA-A*0201+ melanoma patients. J. Immunol. 158, 5902–5913.

    PubMed  CAS  Google Scholar 

  43. Valmori, D., Pittet, M. J., Rimoldi, D., Liénard, D., Dunbar, R., Cerundolo, V., Lejeune, F., Cerottini, J.-C., and Romero, P. (1999) An antigen-targeted approach to adoptive transfer therapy of cancer. Cancer Res. 59, 2167–2173.

    PubMed  CAS  Google Scholar 

  44. Encell, L. P., Landis, D. M., and Loeb, L. A. (1999) Improving enzymes for cancer gene therapy. Nat. Biotechnol. 17, 143–147.

    Article  PubMed  CAS  Google Scholar 

  45. Pope, I. M., Poston, G. J., and Kinsella, A. R. (1997) The role of the bystander effect in suicide gene therapy. Eur. J. Cancer 33, 1005–1016.

    Article  PubMed  CAS  Google Scholar 

  46. Vile, R. G., Castleden, S., Marshall, J., Camplejohn, R., Upton, C., and Chong, H. (1997) Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression. Int. J. Cancer 71, 267–274.

    Article  PubMed  CAS  Google Scholar 

  47. Consalvo, M., Mullen, C. A., Modesti, A., Musiani, P., Allione, A., Cavallo, F., Giovarelli, M., and Forni, G. (1995) 5-fluorocytosine-induced eradication of murine adenocarcinomas engineered to express the cytosine deaminase suicide gene requires host immune competence and leaves an efficient memory. J. Immunol. 154, 5302–5312.

    PubMed  CAS  Google Scholar 

  48. Hart, I. R. (1996) Tissue specific promoters in targeting systemically delivered gene therapy. Semin. Oncol. 23, 154–158.

    PubMed  CAS  Google Scholar 

  49. Szala, S., Missol, E., Sochanik, A., and Strozyk, M. (1996) The use of cationic liposomes DC-CHOL/DOPE and DDAB/DOPE for direct transfer of Escherichia coli cytosine deaminase gene into growing melanoma tumors. Gene Ther. 3, 1026–1031.

    PubMed  CAS  Google Scholar 

  50. Pawelek, J. M., Low, K. B., and Bermudes, D. (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57, 4537–4544.

    PubMed  CAS  Google Scholar 

  51. Wildner, O. M., Morris, J. C., Vahanian, N. N., Ford, H. Jr., Ramsey, W. J., and Blaese, R. M. (1999) Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Ther. 6, 57–62.

    Article  PubMed  CAS  Google Scholar 

  52. Bonnekoh, B., Greenhalgh, D. A., Chen, S. H., Block, A., Rich, S. S., Krieg, T., Woo, S. L., and Roop, D. R. (1998) Ex vivo and in vivo adenovirus-mediated gene therapy strategies induce a systemic anti-tumor immune defence in the B16 melanoma model. J. Invest. Dermatol. 110, 867–871.

    Article  PubMed  CAS  Google Scholar 

  53. Castleden, S. A., Chong, H., Garcia-Ribas, I., Melcher, A. A., Hutchinson, G., Roberts, B., Hart, I. R., and Vile, R. G. (1997) A family of bicistronic vectors to enhance both local and systemic antitumor effects of HSVtk or cytokine expression in a murine melanoma model. Hum. Gene Ther. 20, 2087–2102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Parmiani, G., Arienti, F., Melani, C., Belli, F., Gallino, G., Mazzocchi, A. (2001). Gene Therapy in Melanoma. In: Nickoloff, B.J., Hood, L. (eds) Melanoma Techniques and Protocols. Methods in Molecular Medicine, vol 61. Humana Press. https://doi.org/10.1385/1-59259-145-0:203

Download citation

  • DOI: https://doi.org/10.1385/1-59259-145-0:203

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-684-0

  • Online ISBN: 978-1-59259-145-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics