Skip to main content

Identification of Altered Gene Expression Associated with Pigmentary Lesions by Differential Display Analysis

  • Protocol
Melanoma Techniques and Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 61))

  • 478 Accesses

Abstract

Identification of alterations in gene expression is an important step in understanding the development and progression of human disease. For pigmentary disorders with an unresolved hereditary component, genetic and epigenetic changes that alter the expression of genes as a direct or indirect consequence can be investigated by expression analysis. This can be of particular importance in conditions in which multiple genes are involved, as in melanoma or vitiligo (1,2). Differential display analysis is a technique that is widely used and entails semiquantitative polymerase chain reaction (PCR) amplification of 3′ ends of messenger RNA (mRNA) (36). The primer sets used hybridize to the poly-A tail of mRNA on one end, and to an arbitrary countersequence on the other. Each set of primers is designed to amplify some 150 messages present in the RNA under study. These messages are subsequently separated by polyacrylamide gel electrophoresis. Using a labeled nucleotide in the PCR reaction, the intensity of each band can subsequently be compared in samples of interest. Following reamplification, confirmation, cloning, and sequencing, the fragments of interest are further analyzed. Figure 1 outlines this sequence of events. Although the length of the fragments amplified usually excludes coding regions, the 3′ noncoding regions are unique and can serve to identify the gene of interest, provided the fragment belongs to a gene or an expressed sequence tag (EST) that has previously been submitted to GenBank (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welch, D. R. and Goldberg, S. F. (1997) Molecular mechanisms controlling human melanoma progression and metastasis. Pathobiology 65, 311–330.

    Article  PubMed  CAS  Google Scholar 

  2. Nordlund, J. J (1997) The epidemiology and genetics of vitiligo. Clin. Dermatol. 15, 875–878.

    Article  PubMed  CAS  Google Scholar 

  3. Liang, P. and Pardee, A. B. (1992) Display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–970.

    Article  PubMed  CAS  Google Scholar 

  4. Liang, P., Averboukh, L., Keyomarsi, K., and Pardee, A. B. (1994) Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 21, 3269–3275.

    Article  Google Scholar 

  5. Mou, L., Miller, H., Li, J., Wang, E., and Chalifour, L. (1994) Improvements to the differential display method for gene analysis. Biochem. Biophys. Res. Commun. 199, 564–569.

    Article  PubMed  CAS  Google Scholar 

  6. Bauer D. Muller H. Reich J. Riedel H. Ahrenkiel V. Warthoe P. and Strauss M. 1993 Identification of differentially expressed mRNA species by an improved display technique DDRT–PCR. Nucleic Acids Res. 21] 4272–4280

    Article  PubMed  CAS  Google Scholar 

  7. Lipman, D. J. (1997) Making (anti)sense of non-coding sequence conservation. Nucleic Acids Res. 25, 3580–3583.

    Article  PubMed  CAS  Google Scholar 

  8. Kwon, B. S., Halaban, R., Kim, G. S., Usack, L., Pomerantz, S., and Haq, A. K. (1987) A melanocyte-specific complementary DNA clone whose expression is inducible by melanotropin and isobutylmethyl xanthine. Mol. Biol. Med. 4, 339–355.

    PubMed  CAS  Google Scholar 

  9. Dakour, J., Jimbow, K., Vinayagamoorthy, T., Luo, D., and Chen, H. (1993) Characterization of melanosome-associated proteins by establishment of monoclonal antibodies and immunoscreening of a melanoma cDNA library through an anti-melanosome antibody. Melanoma Res. 3, 331–336.

    Article  PubMed  CAS  Google Scholar 

  10. Frohmann, M. A. (1994) On beyond classic RACE (Rapid Amplification of cDNA Ends). PCR Meth. Appl. 4, 40–48.

    Google Scholar 

  11. Jiang, H., Lin, J. J., Su, Z. Z., Goldstein, N. I., and Fisher, P. B. (1995) Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 11, 2477–2486.

    PubMed  CAS  Google Scholar 

  12. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microaaray. Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  13. Le Poole, I. C., Yang, F., Brown, T. L., Cornelius, J., Babcock, G. F., Das, P. K., and Boissy, R. E. Altered gene expression in melanocytes exposed to 4-tertiary butyl phenol (4-TBP): upregulation of the A2b adenosine receptor. J. Invest. Dermatol. 113, 725–731.

    Google Scholar 

  14. Bennett, D. C., Cooper, P. J., and Hart, I. R. (1987) A line of non-tumorigenic mouse melanocytes syngeneic with the B16 melanoma and requiring a tumor promotor for growth. Int. J. Cancer 39, 414–418.

    Article  PubMed  CAS  Google Scholar 

  15. Maiorana, A., Cavallari, V., Maiorana, M. C., Fano, R. A., Scimone, S., Fante, R., and Garbisa, S. (1992) Metastatic capacity and differentiation in murine melanoma cell lines: a morphometric study. Pathol. Res. Pract. 188, 657–662.

    Article  PubMed  CAS  Google Scholar 

  16. Ishiguro, T., Nakajima, M., Naito, M., Muto, T., and Tsuruo, T. (1996) Identification of genes differentially expressed in B16 murine melanoma sublines with different metastatic potentials. Cancer Res. 55, 6237–6243.

    Google Scholar 

  17. van Groningen, J. J. M., Bloemers, H. P. J., and Swart, G. W. M. (1995) Identification of melanoma inhibitory activity and other differentially expressed messenger RNAs in human melanoma cell line with different metastatic capacity by messenger RNA differential display. Cancer Res. 55, 4109–4115.

    Google Scholar 

  18. GÓmez, L. A., Strasberg Rieber, M., and Rieber, M. (1996) PCR-mediated differential display and cloning of a melanocyte gene decreased in malignant melanoma and up-regulated with sensitization to DNA damage. DNA Cell Biol. 15, 423–427.

    Article  PubMed  Google Scholar 

  19. Hashimoto, Y., Shindo-Okada, N., Tani, M., Takeuchi, K., Toma, H., and Yokota, J. (1996) Identification of genes differentially expressed in association with metastatic potential of K-1735 murine melanoma by messenger RNA differential display. Cancer Res. 56, 5266–5271.

    PubMed  CAS  Google Scholar 

  20. Francia, G., Mitchell, S. D., Moss, S. E., Hanby, A. M., Marshall, J. F., and Hart, I. R. (1996) Identification by differential display of annexin-VI, a gene differentially expressed during melanoma progression. Cancer Res. 56, 3855–3858.

    PubMed  CAS  Google Scholar 

  21. Hildebrandt, T., Freiherr, J., Klostermann, S., Kaul, S., Zendman, A. J. W., van Muijen, G. N. P., and Weidle, U. H. (1999) Identification of URIM, a novel gene up-regulated in metastasis. Anticancer Res. 19, 525–530.

    PubMed  CAS  Google Scholar 

  22. Duncan, L. M., Deeds, J., Hunter, J., Shao, J., Holmgren, L. M., Woolf, E. A., Tepper, R. I., and Shyjan, A. W. (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res. 58, 1515–1520.

    PubMed  CAS  Google Scholar 

  23. van Groningen, J. J. M., Egmond, M. R., Bloemers, H. P. J., and Swart, G. W. M. (1997) nmd, A novel gene differentially expressed in human melanoma cell lines, encodes a new and atypical member of the family of lipases. FEBS Lett. 404, 82–86.

    Article  PubMed  Google Scholar 

  24. Vogt, T. M. M., Welsh, J., Stolz, W., Kullman, F., Jung, B., Landthaler, M., and McCleland, M. (1997) RNA fingerprinting displays UVB-specific disruption of transcriptional control in human melanocytes. Cancer Res. 57, 3554–3561.

    PubMed  CAS  Google Scholar 

  25. Furumura, M., Sakai, C., Potterf, S. B., Vieira, W. D., Barsh, G. S., and Hearing, V. J. (1998) Characterization of genes modulated during pheomelanogenesis using differential display. Proc Natl Acad Sci USA 95, 7374–7378.

    Article  PubMed  CAS  Google Scholar 

  26. Giambernardi, T. A., Rodeck, U., and Klebe, R. J. (1998) Bovine serum albumin reverses inhibition of RT-PCR by melanin. BioTechniques 25, 564–566.

    PubMed  CAS  Google Scholar 

  27. Smit, N. P. M., Van der Meulen, H., Koerten, H. K., Kolb, R. M., Lentjes, E. G., and Pavel, S. (1997) Melanogenesis in cultured melanocytes can be substantially influenced by L-tyrosine and L-cysteine. J. Invest. Dermatol. 109, 796–800.

    Article  PubMed  CAS  Google Scholar 

  28. Trentmann, S. M., Van der Knaap, E., and Kende, H. (1995) Alternatives to 35S as a label for the differential display of eukaryotic messenger RNA. Science 267, 1186.

    Article  PubMed  CAS  Google Scholar 

  29. Marchuk, D., Drumm, M., Saulino, A., and Collins, F. S. (1991) Construction of T-Vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 19, 1154.

    Article  PubMed  CAS  Google Scholar 

  30. Callard, D., Lescure, B., and Mazzolini, L. (1994) A method for the elimination of false positives generated by the mRNA differential display technique. BioTechniques 16, 1100–1103.

    Google Scholar 

  31. Wadha, R., Duncan, E., Kaul, S. C., and Reddel, R. R. (1996) An effective elimination of false positives isolated from differential display of mRNAs. Mol. Biotechnol. 6, 213–217.

    Article  Google Scholar 

  32. Luce, M. J. and Burrows, P. D. (1998) Minimizing false positives in differential display. BioTechniques 24, 766–768, 770.

    PubMed  CAS  Google Scholar 

  33. Miele, G., MacRae, L., McBride, D., Manson, J., and Clinton, M. (1998) Elimination of false positives generated through PCR re-amplification of differential display cDNA. BioTechniques 25, 138–144.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Le Poole, I., Brown, T.L. (2001). Identification of Altered Gene Expression Associated with Pigmentary Lesions by Differential Display Analysis. In: Nickoloff, B.J., Hood, L. (eds) Melanoma Techniques and Protocols. Methods in Molecular Medicine, vol 61. Humana Press. https://doi.org/10.1385/1-59259-145-0:165

Download citation

  • DOI: https://doi.org/10.1385/1-59259-145-0:165

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-684-0

  • Online ISBN: 978-1-59259-145-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics