Skip to main content

Genetic Testing in Familial Melanoma

Epidemiologic/Genetic Assessment of Risks and Role of CDKN2A Analysis

  • Protocol

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 61))

Abstract

The first description of familial melanoma in the English literature appeared in 1820, when Norris (1) reported: It is remarkable that this gentleman’s father, about thirty years ago, died of a similar disease.... This tumour, I have remarked, originated in a mole, and it is worth mentioning, that not only my patient and his children had many moles on various parts of their bodies, but also his own father and brothers had many of them.... These facts, together with a case that has come under my notice, rather similar, would incline me to believe that this disease is hereditary. Since then, many families with a predisposition to melanoma have been described worldwide (25). For purposes of case definition, our laboratory curently defines familial melanoma (FMM) as a family containing >2 affected first-degree relatives with melanoma and/or pancreatic carcinoma. According to this definition, about 8–12% of melanoma is inherited as an autosomal dominant trait with variable penetrance. Affected members (AFM) of these FMM kindreds may develop multiple primary melanoma (6) and/or pancreatic cancer (7) and typically present at an earlier age than do patients with sporadic disease. In a subset of such individuals and kindreds, germline mutations of the CDKN2A gene (also known as p16INK4A and MTS1) cosegregate with cases of melanoma (25).

We have hypothesized that the identification of mutation carriers may in the future allow us to direct resources to the prevention and surveillance of mela noma in high-risk individuals and families. This chapter provides an overview of melanoma genetics, as well as the indications, drawbacks, and methods of germline CDKN2A mutation screening by polymerase chain reaction (PCR) amplification and automated sequencing of genomic DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Norris, W. (1820) A case of fungoid disease. Edinburgh Med. Surg. J. 16, 562.

    Google Scholar 

  2. Hussussian, C. J., et al. (1994) Germline p16 mutations in familial melanoma. Nat. Genet. 8, 15–21.

    Article  PubMed  CAS  Google Scholar 

  3. Kamb, A., et al. (1994) Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat. Genet. 8, 23–26.

    Article  PubMed  CAS  Google Scholar 

  4. FitzGerald, M. G., et al. (1996) Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc. Natl. Acad. Sci. USA 93, 8541–8545.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, L., et al. (1997) Affected members of melanoma-prone families with linkage to 9p21 but lacking mutations in CDKN2A do not harbor mutations in the coding regions of either CDKN2B or p19ARF. Genes Chromosomes Cancer 19, 52–54.

    Article  PubMed  Google Scholar 

  6. Monzon, J., et al. (1998) CDKN2A mutations in multiple primary melanomas. N. Engl. J. Med. 338, 879–887.

    Article  PubMed  CAS  Google Scholar 

  7. Goldstein, A. M., et al. (1995) Increased risk of pancreatic cancer in melanomaprone kindreds with p16INK4 mutations. N. Engl. J. Med. 333, 970–974.

    Google Scholar 

  8. Bale, S. J., et al. (1989) Mapping the gene for hereditary cutaneous malignant melanoma-dysplastic nevus to chromosome 1p. N. Engl. J. Med. 320, 1367–1372.

    Article  PubMed  CAS  Google Scholar 

  9. Cannon-Albright, L. A., et al. (1992) Assignment of a locus for familial melanoma, MLM, to chromosome 9p13–p22. Science 258, 1148–1152.

    Article  PubMed  CAS  Google Scholar 

  10. Cannon-Albright, L. A., et al. (1994) Localization of the 9p melanoma susceptibility locus (MLM) to a 2-cM region between D9S736 and D9S171. Genomics 23, 265–268.

    Article  PubMed  CAS  Google Scholar 

  11. Walker, G. J., et al. (1994) Linkage analysis in familial melanoma kindreds to markers on chromosome 6p. Int. J. Cancer 59, 771–775.

    Article  PubMed  CAS  Google Scholar 

  12. Kamb, A., et al. (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440.

    Article  PubMed  CAS  Google Scholar 

  13. Bergman, W., Gruis, N. A., Sandkuijl, L. A., and Frants, R. R. (1994) Genetics of seven Dutch familial atypical multiple mole-melanoma syndrome families: a review of linkage results including chromosomes 1 and 9. J. Invest. Dermatol. 103, 122S–125S.

    Article  PubMed  CAS  Google Scholar 

  14. Parry, D. and Peters, G. (1996) Temperature-sensitive mutants of p16CDKN2 associated with familial melanoma. Mol. Cell. Biol. 16, 3844–3852.

    PubMed  CAS  Google Scholar 

  15. Smith-Sorensen, B., and Hovig, E. (1996) CDKN2A (p16INK4A) somatic and germline mutations. Hum. Mutat. 7, 294–303.

    Article  PubMed  CAS  Google Scholar 

  16. Holland, E. A., et al. (1995) Analysis of the p16 gene, CDKN2, in 17 Australian melanoma kindreds. Oncogene 11, 2289–2294.

    PubMed  CAS  Google Scholar 

  17. Walker, G. J., et al. (1995) Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. Hum. Mol. Genet. 4, 1845–1852.

    Article  PubMed  CAS  Google Scholar 

  18. Kamb, A. (1995) Cell-cycle regulators and cancer. Trends Genet. 11, 136–140.

    Article  PubMed  CAS  Google Scholar 

  19. Sherr, C. J. and Roberts, J. M. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512.

    Article  PubMed  CAS  Google Scholar 

  20. Sherr, C. J. (1998) Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984–2991.

    Article  PubMed  CAS  Google Scholar 

  21. Stone, S., etal. (1995) Complex structure and regulation of theP16 (MTS1) locus. Cancer Res. 55, 2988–2994.

    PubMed  CAS  Google Scholar 

  22. Kamijo, T., Bodner, S., vande Kamp, E., Randle, D. H., and Sherr, C. J. (1999) Tumor spectrum in ARF-deficient mice. Cancer Res. 59, 2217–2222.

    PubMed  CAS  Google Scholar 

  23. Kamijo, T., et al. (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659.

    Article  PubMed  CAS  Google Scholar 

  24. Watson, J. E, et al. (1999) Identification and characterization of a homozygous deletion found in ovarian ascites by representational difference analysis. Genome Res. 9, 226–233.

    PubMed  CAS  Google Scholar 

  25. Czerniak, B., et al. (1999) Superimposed histologic and genetic mapping of chromosome 9 in progression of human urinary bladder neoplasia: implications for a genetic model of multistep urothelial carcinogenesis and early detection of urinary bladder cancer. Oncogene 18, 1185–1196.

    Article  PubMed  CAS  Google Scholar 

  26. Farrell, W. E., et al. (1997) Chromosome 9p deletions in invasive and noninvasive nonfunctional pituitary adenomas: the deleted region involves markers outside of the MTS1 and MTS2 genes. Cancer Res. 57, 2703–2709.

    PubMed  CAS  Google Scholar 

  27. Liu, L., et al. (1999) Mutation of the CDKN2A 5’ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat. Genet. 21, 128–132.

    Article  PubMed  Google Scholar 

  28. Bahuau, M., et al. (1998) Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res. 58, 2298–2303.

    PubMed  CAS  Google Scholar 

  29. Tucker, M. A., et al. (1993) Risk of melanoma and other cancers in melanomaprone families. J. Invest. Dermatol. 100, 350S–355S.

    Article  PubMed  CAS  Google Scholar 

  30. Goldstein, A. M. and Tucker, M. A. (1995) Genetic epidemiology of familial melanoma. Dermatol. Clin. 13, 605–612.

    PubMed  CAS  Google Scholar 

  31. Battistutta, D., et al. (1994) Incidence of familial melanoma and MLM2 gene. Lancet 344, 1607–1608.

    Article  PubMed  CAS  Google Scholar 

  32. MacLennan, R., Green, A. C., McLeod, G. R., and Martin, N. G. (1992) Increas ing incidence of cutaneous melanoma in Queensland, Australia. J. Natl. Cancer Inst. 84, 1427–1432.

    Article  PubMed  CAS  Google Scholar 

  33. Goldstein, A. M., et al. (1994) Linkage of cutaneous malignant melanoma/ dysplastic nevi to chromosome 9p, and evidence for genetic heterogeneity. Am. J. Hum. Genet. 54, 489–496.

    PubMed  CAS  Google Scholar 

  34. Soufir, N., et al. (1998) Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum. Mol. Genet. 7, 209–216 (published erratum appears in Hum. Mol. Genet. 1998;7[5]:941).

    Article  PubMed  CAS  Google Scholar 

  35. Zuo, L., et al. (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat. Genet. 12, 97–99.

    Article  PubMed  CAS  Google Scholar 

  36. Traboulsi, E. I., Zimmerman, L. E., and Manz, H. J. (1988) Cutaneous malignant melanoma in survivors of heritable retinoblastoma. Arch. Ophthalmol. 106, 1059–1061.

    Article  PubMed  CAS  Google Scholar 

  37. Consortium, T. B. C. L. (1999) Cancer risks in BRCA2 mutation carriers. J. Natl. Cancer Inst. 91, 1310–1316.

    Article  Google Scholar 

  38. Tucker, M. A., et al. (1997) Clinically recognized dysplastic nevi: a central risk factor for cutaneous melanoma. JAMA 277, 1439–1444.

    Article  PubMed  CAS  Google Scholar 

  39. Greene, M. H. (1997) Genetics of cutaneous melanoma and nevi. Mayo Clin. Proc. 72, 467–474.

    Article  PubMed  CAS  Google Scholar 

  40. Hashemi, J., Linder, S., Platz, A., and Hansson, J. (1999) Melanoma development in relation to non-functional p16/INK4A protein and dysplastic naevus syndrome in Swedish melanoma kindreds. Melanoma Res. 9, 21–30.

    Article  PubMed  CAS  Google Scholar 

  41. Tucker, M. A., Misfeldt, D., Coleman, C. N., Clark, W. H. Jr., and Rosenberg, S. A. (1985) Cutaneous malignant melanoma after Hodgkin’s disease. Ann. Intern. Med. 102, 37–41.

    PubMed  CAS  Google Scholar 

  42. Raghavan, D., et al. (1994) Multiple atypical nevi: a cutaneous marker of germ cell tumors. J. Clin. Oncol. 12, 2284–2287.

    PubMed  CAS  Google Scholar 

  43. Lal, G., et al. (2000) Patients with both pancretic adenocarcinoma and melanoma may harbor germline CDKN2A mutations. Genes, Chromosomes, Cancer 27, 358–361.

    Article  CAS  Google Scholar 

  44. Shennan, M. G., et al. (2000) Lack of germline CDK6 mutations in familial melanoma. Oncogene 19, 1849–1852.

    Article  PubMed  CAS  Google Scholar 

  45. Ruas, M. and Peters, G. (1998) Thep16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta. 1378, F115–F177.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Hogg, D., Liu, L., Lassam, N. (2001). Genetic Testing in Familial Melanoma. In: Nickoloff, B.J., Hood, L. (eds) Melanoma Techniques and Protocols. Methods in Molecular Medicine, vol 61. Humana Press. https://doi.org/10.1385/1-59259-145-0:109

Download citation

  • DOI: https://doi.org/10.1385/1-59259-145-0:109

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-684-0

  • Online ISBN: 978-1-59259-145-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics