Skip to main content
Book cover

Renal Cancer pp 385–399Cite as

Static and Flow Cytometry

  • Protocol
  • 448 Accesses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 53))

Abstract

It has been known for over 50 years that the amount of nuclear chromatin (DNA) in malignant neoplasms differs from that of homologous normal cells (1). More recently, it has been shown that nuclear DNA content correlates with the clinical outcome of various human neoplasms including urologic malignancies (210). An important problem in the care of patients with renal cell carcinoma (RCC) is the prediction of the neoplasms malignant potential, and in turn the patient’s prognosis. Various parameters have been used to assess the malignant potential of renal cell carcinoma, including clinical and pathologic stage, histologic grade, tumor size, nuclear morphology, immunohistochemistry, age, elevated erythrocyte sedimentation rate, and hypercalcemia. To date, the most important predictors of prognosis in patients with RCC have been tumor pathologic stage, histologic grade and type (11,12). However, it has been shown that patients within a specified stage and grade may differ in their disease progression and survival (13,14). Furthermore, none of these variables alone or in combination has shown to provide total reliable prognostic information for the individual patient. These reasons led several groups to evaluate the prognostic value of nuclear DNA content in patients with renal cell carcinoma.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Caspersson, T. and Santesson L. (1942) Studies on protein metabolism of the cells of epithelial tumors. Acta Radiol (Suppl.)46, 1–105.

    Google Scholar 

  2. Auer, G. and Tribukait B. (1980) Comparative single cell and flow DNA analysis in aspiration biopsies from breast carcinomas. Acta Pathol. Microbiol. Immunol. Scand.[A]88, 355–358.

    CAS  Google Scholar 

  3. Nativ, O., Myers, R. P., Therneau, T. M., Farrow, G. M., and Lieber, M. M. (1996) Feulgen-stained histologic sections of prostate needle biopsy specimens: reliability of DNA static image analysis. Forum6, 313–318.

    Google Scholar 

  4. Raviv, G., Leibovich, I., Mor, Y., Nass, D., Medalia, O., Goldwasser, B., and Nativ, O. (1993) Localized renal cell carcinoma treated by radical nephrectomy: Influence of pathologic data and the importance of DNA ploidy pattern on disease outcome. Cancer72, 2207–2212.

    Article  CAS  Google Scholar 

  5. Ellis, W.J., Bauer, K. D., Oyasu, R., and McVary, K. T. (1992) Flow cytometric analysis of small renal tumors. J. Urol.148, 1774–1777.

    Article  CAS  Google Scholar 

  6. al-Abadi, H. and Nagel R. (1992) Transitional cell of the renal pelvis and ureter: Prognostic relevance of nuclear deoxyribonucleic acid ploidy studied by slide cytometry: 8-year survival time study. J. Urol.48, 31–37.

    Article  Google Scholar 

  7. Stephenson, R. A. (1988) Flow cytometry in genitourinary malignancies using paraffin-embedded material. Semin. Urol.6, 46–52.

    CAS  PubMed  Google Scholar 

  8. Brendler, C. B. (1988) Flow cytometric evaluation of urological malignancies. J. Urol.139, 342–343.

    Article  CAS  Google Scholar 

  9. Ljungberg, B., Forsslund, G., Stenling, R., and Zetterberg, A. (1986) Prognostic significance of the DNA content in renal cell carcinoma. J. Urol.135, 422–426.

    Article  CAS  Google Scholar 

  10. Baisch, H., Otto, U., and Klöppel, G. (1986) Malignancy index based on flow cytometry and histology for renal cell carcinomas and its correlation to prognosis. Cytometry7, 200–04.

    Article  CAS  Google Scholar 

  11. Medeiros, L. J., Gelb, A. B., and Weiss, L. M. (1988) Renal cell carcinoma: prognostic significance of morphological parameters in 121 cases. Cancer61, 1639–1651.

    Article  CAS  Google Scholar 

  12. Jonas, D., Thoma, B., Beckert, H., and Weber, W. (1985) The value of morphological prognostic criteria in the assessment of renal cell carcinoma. Urol. Int.40, 148–154.

    Article  CAS  Google Scholar 

  13. Currin, S. M., Lee, S. E., and Walther, P. J. (1990) Flow cytometric assessment of deoxyribonucleic acid content in renal adenocarcinoma: does ploidy status enhance prognostic stratification over stage alone? J. Urol.143, 458–463.

    Article  CAS  Google Scholar 

  14. Otto, U., Baisch, H., Huland, H., and Klöppel, G. (1984) Tumor cell dexoxyribonucleic acid content in prognosis in renal cell carcinoma. J. Urol.132, 237–239.

    Article  CAS  Google Scholar 

  15. Grignon, D. J., El-Nagger, A., Green, L. K., Ayala, A. G., Ro, J. Y., Swanson, D. A., Troncoso, P., McLemore, D., Giacco, G. G., Guinee, V. F. (1989) DNA flow cytometry as a predictor of outcome of Stage I renal cell carcinoma. Cancer63, 1161–1165.

    Article  CAS  Google Scholar 

  16. Ljungberg, B., Stenling, R., and Roos, G. (1985) DNA content in renal cell carcinoma with reference to tumor heterogeneity. Cancer56, 503–508.

    Article  CAS  Google Scholar 

  17. Feulgen, R. and Rossenbeck, H. (1924) microskopisch-chemischer nachweis einer mukleinsaure vom typus der thymonukleinsure preparaten. Hoppe-seylers Z. Phys. Chem.135, 203–248.

    Article  CAS  Google Scholar 

  18. Tolles, W. E., Horvath, W. J., and Bostrom, R. C. (1961) A study of the quantitative characteristics of the exfoliative cells from the female genital tract. Cancer14, 347–454.

    Google Scholar 

  19. Hemstreet, G. P., West, S. S., and Weems, W. L., (1983) Quantitative fluorescence measurements of AO-stained normal and malignant bladder cells. Int. J. Cancer31, 577–585.

    Article  Google Scholar 

  20. Hedley, D. W., Friedlander, M. L., Taylor, I. W., Rugg, C. A., and Musgrove, E. A. (1983) Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J. Histochem. Cytochem.31, 1333–1335.

    Article  CAS  Google Scholar 

  21. Vindeløv, L. L., Christensen, I. J., and Nissen, N. I. (1983) A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry3, 323–327.

    Article  Google Scholar 

  22. Cope, C., Rowe D., Delbridge, L., Philips, J., and Friedlander, M. (1991) Comparison of image analysis and flow cytometric determination of cellular DNA content. J. Clin. Pathol.44, 147–151.

    Article  CAS  Google Scholar 

  23. Deitch, A., Wagner, D., and Richart, R. (1968) Conditions influencing the intensity of the Feulgen reaction. J. Histochem. Cytochem.16, 371–379.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Madeb, R., Pode, D., Nativ, O. (2001). Static and Flow Cytometry. In: Mydlo, J.H. (eds) Renal Cancer. Methods in Molecular Medicine, vol 53. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-144-2:385

Download citation

  • DOI: https://doi.org/10.1385/1-59259-144-2:385

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-828-8

  • Online ISBN: 978-1-59259-144-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics