Telomerase Assay in Renal Cancer

  • William W. Zhang
  • Laurence H. Klotz
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 53)


Telomeres are repeating sequences located at each end of eukaryotic chromosomes. These sequences function to protect chromosome positioning and replication (1, 2, 3). In vertebrates, telomere DNA consists of tandem repeats of TTAGGG, 10–15 kb pairs long (4). In most normal cells, DNA replication during mitosis results in the loss of telomere sequences 50–100 bp at the 5′ ends of DNA termini (1,5). This sequence loss is mandated by the end-replication-splicing problem (Fig. 1). Thus, telomeres progressively shorten with age in somatic cells in culture and in vivo. In contrast, cancer cells and malignant cell lines retain telomere length despite repeated mitosis (6). This is believed to be an essential component of immortalization for most cells.
Fig. 1.

End-replication problem. As the replication fork proceeds from left to right, the leading strand proceeds to replicate one strand of original DNA (see B). The direction of the lagging strand is opposite to the direction of the replication fork and relies on the ligation of Okazaki fragments, which are primed with short stretches. Most RNA primer is never replaced with DNA (see C). Consequently, each round of replication produced a daughter chromosome. These are deficient in the sequences corresponding to the original 3′ ends.


Renal Cell Carcinoma Telomeric Repeat Amplification Protocol Telomeric Repeat Amplification Protocol Normal Renal Tissue Polymerase Chain Reaction Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Harley, C. and Villepontear, B. (1995) Telomeres and telomerase in aging and cancer. Curr. Opin. Genet. Dev. 5, 249–255.CrossRefPubMedGoogle Scholar
  2. 2.
    Blackburn, E. H. (1990) Telomeres: structure and synthesis. J. Biol. Chem. 265, 5919–5921.PubMedGoogle Scholar
  3. 3.
    Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L. C., Coviello, G. M., Wright, W. E., Weinrich, S. L., and Shay, J. W. (1994) Specific association of human telomerase activity with immortal cells and cancer.Science 22, 2011–2015.CrossRefGoogle Scholar
  4. 4.
    de Lange, T., Shiue, L., Myers, R. M., Cox, D. R., Naylor, S. L., Killery, A. M., and Varmus, H. E. (1990) Structure and variability of human chromosome ends. Mol. CellBiol. 10, 518–527.Google Scholar
  5. 5.
    Bacchetti, S. and Counter, C. M. (1995) Telomeres and telomerase in human cancer. Int. J. Oncol. 7, 423–432.PubMedGoogle Scholar
  6. 6.
    Counter, C. M., Avilion, A. A., Lefeuvre, C. E., Stewart, N. G., Greider, C. W., Harley, C. B., and Bacchetti, S. (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Greider, C. W. and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 4, 405–413.CrossRefGoogle Scholar
  8. 8.
    Morin, G. B. (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesized TTAGGG repeats. Cell 59, 521–529.CrossRefPubMedGoogle Scholar
  9. 9.
    Horikawa, I., Oshimura, M., and Barrett, J. C. (1998) Repression of the telomerase actalytic subunit by a gene on human chromosome 3 that induced cellular senescence. Mol. Carcinog. 22, 65–72.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang, W., Kapusta, L. R., Slingerland, J. M., and Klotz, L. H. (1998) Telomerase activity in prostate cancer, prostatic intraepithelian neoplasia, and benign prostatic epithelium. Cancer Res. 58, 619–621.PubMedGoogle Scholar
  11. 11.
    Harley, C. B., Futcher, A. B., and Greider, C.W. (1990) Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460.CrossRefPubMedGoogle Scholar
  12. 12.
    Rhyu, M. S. (1995) Telomeres, telomerase, and immortality. J. Natl. Cancer Inst. 87, 884–894.CrossRefPubMedGoogle Scholar
  13. 13.
    Wright, W. E. and Shay, J. W. (1992) The two-stage mechanism controlling cellular senescence and immortalization. Exp. Gerontol. 27, 383–389.CrossRefPubMedGoogle Scholar
  14. 14.
    Rohde, V., Sattler, H. P., Oehlenschlager, B., Forster, S., Zwergel, T., Seitz, G.,and Wullich, B. (1998) Genetic changes and telomerase activity in human renal cell carcinoma. Clin. Cancer Res. 4, 197–202.PubMedGoogle Scholar
  15. 15.
    Selli, C., Hinshaw, W. M., Woodard, B. H., and Paulson, D. F. (1983) Stratification of risk factors in renal cell carcinoma. Cancer 52, 899–903.CrossRefPubMedGoogle Scholar
  16. 16.
    Mehle, C., Piatyszek, M. A., Ljungberg, B., Shay, J. W., and Roos, G. (1996) Telomerase activity in human renal cell carcinoma. Oncogene 13, 161–166.PubMedGoogle Scholar
  17. 17.
    Kyo, S., Kunimi, K., Uchibayashi, T., Namiki, M., and Inoue, M. (1997) Telomerase activity in human urothelial tumors. Am. J. Clin. Pathol. 107, 555–560.PubMedGoogle Scholar
  18. 18.
    Gelmini, S., Caldini, A., Becherini, L., Capaccioli, S., Pazzagli, M., and Orlando, C. (1998) Rapid, quantitative nonisotopic assay for telomerase activity in humantumors. Clin. Chem. 44, 2133–2138.PubMedGoogle Scholar
  19. 19.
    Kinoshita, H., Ogawa, O., Mitsumi, K., Kakehi, Y., Terachi, T., and Yoshida, O.(1998) Low frequency of positive telomerase activity in a chromophobe subtype of renal cell carcinoma. J. Urol. 159, 245–251.CrossRefPubMedGoogle Scholar
  20. 20.
    Yoshida, K., Sakamoto, S., Sumi, S., Higashi, Y., and Kitahara, S. (1998) Telomerase activity in renal cell carcinoma. Cancer 83, 760–766.CrossRefPubMedGoogle Scholar
  21. 21.
    Yoshida, K., Sugino, T., Tahara, H., Woodman, A., Bolodeoku, J., Nargund, V., Fellows, G., Goodison, S., Tahara, E., and Tarin, D. (1996) Telomerase activity in bladder carcinoma and its implication for noninvasive diagnosis by detection of exfoliated cancer cells in urine. Cancer 89, 362–269.Google Scholar
  22. 22.
    Mao, L., El-Naggar, K., Fan, Y., Lee, J. S., Lippman, S. M., Kayser, S., Lotan, and Hong, W. K. (1996) Telomerase activity in head and neck squamous cell carcinoma and adjacent tissues. Cancer Res. 56, 5600–5604.PubMedGoogle Scholar
  23. 23.
    Muller, M., Heicappell, R., Krause, H., Sachsinger, J., Porsche, C., and Miller, K. (1999) Telomerase activity in malignant and benign renal tumors. Eur. Urol. 35, 249–255.CrossRefPubMedGoogle Scholar
  24. 24.
    Counter, C. M., Hirte, H. W., Bacchetti, S., and Harley, C. B. (1994) Telomerase activity in human ovarian carcinoma. Proc. Natl. Acad. Sci. USA 91, 2900–2904.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Chadeneau, C., Hay, K., Hirte, H. W., Gallinger, S., and Bacchetti, S. (1997) Telomerase activity associated with acquisition of malignancy in human colorectal cancer. Cancer Res. 58, 1863–1867.Google Scholar
  26. 26.
    Hiyama, K., Hiyama, E., Ishioka, S., Yamakido, M., Inai, K., Gazdar, A. F., Piatyszek, M. A., and Shay, J. W. (1995) Telomerase activity in small-cell and non-small-cell lung cancers. J. Natl. Cancer Inst. 87, 895–902.CrossRefPubMedGoogle Scholar
  27. 27.
    Kim, N. W. (1997) Clinical implications of telomerase in cancer. Eur. J. Cancer 33, 781–786.CrossRefPubMedGoogle Scholar
  28. 28.
    Mehle, C., Lindblom, A., Ljungberg, B., Stenling, R., and Roos, G. (1998) Loss of heterozygosity at chromosome 3p correlates with telomerase activity in renal cell carcinoma. Int. J. Oncol. 13, 289–295.PubMedGoogle Scholar
  29. 29.
    Horikawa, I., Oshimura, M., and Barrett, J. C. (1998) Repression of the telomerase catalytic subunit by a gene human chromosome 3 that induces cellular senescence.Mol. Carcinog. 22, 65–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Ohmura, H., Tahara, H., Suzuki, M., Ide, T., Shimizu, M., Yoshida, M. A., Tahara, E., Shay, J. W., Barrett, J. C., and Oshimura, M. (1995) Restoration of the cellular senescence program and repression of telomerase by human chromosome 3. Jpn.J. Cancer Res. 86, 899–904.CrossRefPubMedGoogle Scholar
  31. 31.
    Rimessi, P., Gualandi, F., Morelli, C., Trabanelli, C., Wu, Q., Possati, L., Montesi, M., Barrett, J. C., and Barbanti-Brodano, G. (1994) Transfer of human chromosome 3 to an ovarian carcinoma cell line identifies 3 regions on 3p involved inovarian cancer. Oncogene 9, 3467–3473.PubMedGoogle Scholar
  32. 32.
    Uzawa, N., Yoshida, M. A., Oshimura, M., and Ikeuchi, T. (1995) Suppression of tumorigenicity in three difference cell lines of human oral squamous cell carcinoma by introduction of chromosome 3p via microcell mediated chromosome transfer. Oncogene 11, 1997–2004.PubMedGoogle Scholar
  33. 33.
    Holt, S. E., Norton, J. C., Wright, W. E., and Shay, J. W. (1996) Comparison of the telomeric repeat amplification protocol (TRAP) to the new TRAP-ezetelomerase detection kit. Methods Cell Sci. 18, 237–248.CrossRefGoogle Scholar
  34. 34.
    Muller, M., Krause, H., Heicappell, R., Tischendorf, J., Shay, J. W., and Miller, K. (1998) Comparison of human telomerase RNA and telomerase activity in urine for diagnosis of bladder cancer. Clin. Cancer Res. 4, 1949–1954.PubMedGoogle Scholar
  35. 35.
    Heine, B., Hummel, M., Muller, M., Heicappell, R., Miller, K., and Stein, H. (1998) Non-radioactive measurement of telomerase activity in human bladder cancer, bladder washings, and in urine. J. Pathol. 184, 71–76CrossRefPubMedGoogle Scholar
  36. 36.
    Wright, W. E., Shay, J. W., and Piatyszek, M. A. (1995) Modifications of a telomeric repeat amplification protocol (TRAP) result in increase reliability, linearity and sensitivity. Nucleic Acids Res. 23, 3794–3795.CrossRefPubMedCentralPubMedGoogle Scholar

Suggested Reading

  1. Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L. C., Coviello, G. M., Wright, W. E., Weinrich, S. L., and Shay, J. W. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 22, 2011–2015.CrossRefGoogle Scholar
  2. Holt, S. E., Norton, J. C., Wright, W. E., and Shay, J. W. (1996) Comparison of the telomeric repeat amplification protocol (TRAP) to the new TRAP-eze telomerase detection kit. Methods Cell Sci. 18, 237–248.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • William W. Zhang
    • 1
  • Laurence H. Klotz
    • 2
  1. 1.Division of Urology and Cancer Biology Research,Sunnybrook Health Science CenterUniversity of TorontoOntario
  2. 2.Division of Urology Sunnybrook Health Science CenterUniversity of TorontoOntario

Personalised recommendations