Microscopic Assessment of Angiogenesis in Tumors

  • Stephen B. Fox
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 46)


Although it has been recognized for many centuries that neoplastic tissue is more vascular than its normal counterpart, it is only since Folkmans’ hypothesis on antiangiogenesis (1) that a more quantitative method for measuring angiogenesis in tissue sections has been pursued. Folkman and colleagues recognized that quantitation of the tumor vasculature might play an important a role in predicting tumor behavior and patient management. They therefore developed a microscopic angiogenesis grading system, designated the “MAGS” score, calculated by measuring vessel number, endothelial cell hyperplasia, and cytology in tinctorially stained tissue sections (2). It was hoped that this would be an objective method for quantifying tumor angiogenesis, one that would yield important information on the relationship to other clinicopathological tumor characteristics and help in the testing of antiangiogenic therapies. However, although it was possible to classify tumors into endothelial “poor” or “rich,” the technical limitations of sample selection, inter- and intra-observer variation, and conceptual biological problems were such that the technique could not be easily applied. Interest in grading tumor angiogenesis was rekindled in the 1980s with the advent of nonspecific endothelial markers (3, 4, 5), but only in the last five to ten years, with the advent of more specific endothelial markers, have quantitation studies on tissues have been performed.


Vascular Endothelial Growth Factor Microvessel Density Eyepiece Graticule Independent Prognostic Information Inexperienced Observer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Folkman, J. (1971) Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 285, 82–86.CrossRefGoogle Scholar
  2. 2.
    Brem, S., Cotran, R., and Folkman, J. (1972) Tumor angiogenesis: a quantitative method for histological grading. J. Natl. Cancer Inst. 48, 347–356.PubMedGoogle Scholar
  3. 3.
    Mlynek, M., van Beunigen, D., Leder, L.-D., and Streffer, C. (1985) Measurement of the grade of vascularisation in histological tumor tissue sections. Br. J. Cancer 52, 945–948.PubMedCrossRefGoogle Scholar
  4. 4.
    Svrivastava, A., Laidler, P., Davies, R., Horgan, K., and Hughes, L. (1988) The prognostic significance of tumor vascularity in intermediate-thickness (0.76-4.0mm thick) skin melanoma. Am. J. Pathol. 133, 419–423.Google Scholar
  5. 5.
    Porschen, R., Classen, S., Piontek, M., and Borchard, F. (1994) Vascularization of carcinomas of the esophagus and its correlation with tumor proliferation. Cancer Res. 54, 587–591.PubMedGoogle Scholar
  6. 6.
    Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Fox, S. B. (1997) Tumor angiogenesis and prognosis. Histopathology 30, 294–301.PubMedCrossRefGoogle Scholar
  8. 8.
    Van Hoef, M. E., Knox, W. F., Dhesi, S. S., Howell, A., and Schor, A. M. (1993) Assessment of tumor vascularity as a prognostic factor in lymph node negative invasive breast cancer. Eur. J. Cancer 29A, 1141–1145.PubMedGoogle Scholar
  9. 9.
    Hall, N. R., Fish, D. E., Hunt, N., Goldin, R. D., Guillou, P. J., and Monson, J. R. (1992) Is the relationship between angiogenesis and metastasis in breast cancer real? Surg. Oncol. 1, 223–229.PubMedCrossRefGoogle Scholar
  10. 10.
    Sightler, H., Borosky, A., Dupont, W., Page, D., and Jensen, R. (1994) Evaluation of tumor angiogenesis as a prognostic marker in breast cancer. Lab. Invest. 70, 22A (abstract).Google Scholar
  11. 11.
    Vesalainen, S., Lipponen, P., Talja, M., Alhava, E., and Syrjanen, K. (1994) Tumor vascularity and basement membrane structure as prognostic factors in T1-2M0 prostatic adenocarcinoma. Anticancer Res. 14, 709–714.PubMedGoogle Scholar
  12. 12.
    Rutgers, J. L., Mattox, T. F., and Vargas, M. P. (1995) Angiogenesis in uterine cervical squamous cell carcinoma. Int. J. Gynecol. Pathol. 14, 114–118.PubMedCrossRefGoogle Scholar
  13. 13.
    Ohsawa, M., Tomita, Y., Kuratsu, S., Kanno, H., and Aozasa, K. (1995) Angiogenesis in malignant fibrous histiocytoma. Oncology 52, 51–54.PubMedCrossRefGoogle Scholar
  14. 14.
    Barnhill, R., Busam, K., Berwick, M., Blesssing, K., Cochran, A., Elder, D., et al. (1994) Tumor vascularity is not a prognostic factor for cutaneous melanoma. Lancet 344, 1237–1238.PubMedCrossRefGoogle Scholar
  15. 15.
    Axelsson, K., Ljung, B., Moore II, D., Thor, A., Chew, K., Edgerton, S., et al. (1995) Tumor angiogenesis as a prognostic assay for invasive ductal breast carcinoma. J. Natl. Cancer Inst. 87.Google Scholar
  16. 16.
    McCarthy, S. A., Kuzu, I., Gatter, K. C., and Bicknell, R. (1991) Heterogeneity of the endothelial cell and its role in organ preference of tumor metastasis. Trends Pharmacol. Sci. 12, 462–467.PubMedCrossRefGoogle Scholar
  17. 17.
    Wakui, S., Furusato, M., Itoh, T., Sasaki, H., Akiyama, A., Kinoshita, I., et al. (1992) Tumor angiogenesis in prostatic carcinoma with and without bone marrow metastases: a morphometric study. J. Pathol. 168, 257–262.PubMedCrossRefGoogle Scholar
  18. 18.
    Carnochan, P., Briggs, J.C., Westbury, G., and Davies, A.J. (1991) The vascularity of cutaneous melanoma: a quantitative histological study of lesions 0.85-1.25 mm in thickness. Br. J. Cancer 64, 102–107.PubMedCrossRefGoogle Scholar
  19. 19.
    Visscher, D., Smilanetz, S., Drozdowicz, S., and Wykes, S. (1993) Prognostic significance of image morphometric microvessel enumeration in breast carcinoma. Anal. Quant. Cytol. 15, 88–92.Google Scholar
  20. 20.
    Visscher, D., DeMattia, F., and Boman, S. (1994) Technical factors affecting image morphometric microvessel density counts in breast carcinomas. Lab. Invest. 70, 168A (abstract).Google Scholar
  21. 21.
    Ottinetti, A. and Sapino, A. (1988) Morphometric evaluation of microvessels surrounding hyperplastic and neoplastic mammary lesions. Breast Cancer Res. Treat. 11, 241–248.PubMedCrossRefGoogle Scholar
  22. 22.
    Weidner, N., Folkman, J., Pozza, F., Bevilacqua, P., Allred, E. N., Moore, D. H., et al. (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J. Natl. Cancer Inst. 84, 1875–1887.PubMedCrossRefGoogle Scholar
  23. 23.
    Bosari, S., Lee, A. K., DeLellis, R. A., Wiley, B. D., Heatley, G. J., Silverman, M. L. (1992) Microvessel quantitation and prognosis in invasive breast carcinoma. Hum. Pathol. 23, 755–761.PubMedCrossRefGoogle Scholar
  24. 24.
    Bundred, N., Bowcott, M., Walls, J., Faragher, E., and Knox, F. (1994) Angiogenesis in breast cancer predicts node metastasis and survival. Br. J. Surgery 81, 768 (abstract).CrossRefGoogle Scholar
  25. 25.
    Li, V., Folkerth, R., Watanabe, H., Yu, C., Rupnick, M., Barnes, P., et al. (1994) Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumors. Lancet 344, 82–86.PubMedCrossRefGoogle Scholar
  26. 26.
    Parums, D., Cordell, J., Micklem, K., Heryet, A., Gatter, K., Mason, D. (1990) JC70: a new monoclonal antibody that detects vascular endothelium associated antigen on routinely processed tissue sections. J. Clin. Pathol. 43, 752–757.PubMedCrossRefGoogle Scholar
  27. 27.
    Barnhill, R. L., Fandrey, K., Levy, M. A., Mihm, M. J., and Hyman, B. (1992) Angiogenesis and tumor progression of melanoma. Quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma. Lab. Invest. 67, 331–337.PubMedGoogle Scholar
  28. 28.
    Sahin, A., Sneige, N., Singletary, E., and Ayala, A. (1992) Tumor angiogenesis detected by Factor-VIII immunostaining in node-negative breast carcinoma (NNBC): a possible predictor of distant metastasis. Mod. Pathol. 5:17A (abstract).Google Scholar
  29. 29.
    Martin, L., Holcombe, C., Green, B., Winstanley, J., and Leinster, S. (1996) Vascular heterogeneity in breast cancer assessed by microangiography and immunohistochemistry. Br. J. Surg. 83, 702.Google Scholar
  30. 30.
    deJong, J., vanDiest, P., and Baak, J. (1995) Heterogeneity and reproducibility of microvessel counts in breast cancer. Lab. Invest. 73, 992–926.Google Scholar
  31. 31.
    Horak, E. R., Leek, R., Klenk, N., LeJeune, S., Smith, K., Stuart, N., etal. (1992) Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340, 1120–1124.PubMedCrossRefGoogle Scholar
  32. 32.
    Fox, S. B., Leek, R. D., Weekes, M. P., Whitehouse, R. M., Gatter, K. C., and Harris, A. L. (1995) Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count and computer image analysis. J. Pathol. 177, 275–283.PubMedCrossRefGoogle Scholar
  33. 33.
    Vermeulen, P. B., Gasparini, G., Fox, S. B., Toi, M., Martin, L., McCulloch, P., et al. (1996) Quantification of angiogenesis in solid human tumors—an international consensus on the methodology and criteria of evaluation. Eur. J. Cancer 32A, 2474–2484.PubMedCrossRefGoogle Scholar
  34. 34.
    Chalkley, H. (1943) Method for the quantative morphological analysis of tissues. J. Natl. Cancer Inst. 4, 47–53.Google Scholar
  35. 35.
    Fox, S. B., Leek, R., Smith, K., Hollyer, J., Greenall, M., and Harris, A. (1994) Tumor angiogenesis in node negative breast carcinomas-relationship to epidermal growth factor receptor and survival. Breast Cancer Res. Treat. 29, 109–116.PubMedCrossRefGoogle Scholar
  36. 36.
    Dickinson, A. J., Fox, S. B., Persad, R. A., Hollyer, J., Sibley, G. N., and Harris, A. L. (1994) Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas. Br. J. Urol. 74, 762–766.PubMedCrossRefGoogle Scholar
  37. 37.
    Barbareschi, M., Weidner, N., Gasparini, G., Morelli, L., Forti, S., Eccher, C., et al. (1995) Microvessel quantitation in breast carcinomas. Appl. Immunochem. 3, 75–84.Google Scholar
  38. 38.
    Fox, S. B., Leek, R., Bliss, J., Gusterson, B., Mansi, J., Gatter, K., and Harris, A. (1997) Tumor angiogenesis is associated with bone marrow micrometastasis in breast cancer patients. J. Natl. Cancer Inst. 89, 1044–1049.PubMedCrossRefGoogle Scholar
  39. 39.
    Burrows, F. J. and Thorpe, P. E. (1994) Vascular targeting—a new approach to the therapy of solid tumors. Pharmacol. Ther. 64, 155–174.PubMedCrossRefGoogle Scholar
  40. 40.
    Fox, S. B. and Harris, A. (1997) Markers of tumor angiogenesis: clinical applications in prognosis and anti-angiogenic therapy. Invest New Drugs, in press.Google Scholar
  41. 41.
    Warren, B. (1979) The vascular morphology of tumors. In: Tumor Blood Circulation (Peterson, H., ed. CRC Press, Boca Raton, Fla, pp. 1–47.Google Scholar
  42. 42.
    Smolle, J., Soyer, H. P., Hofmann-Wellenhof, Smolle-Juettner, F. M., and Kerl, H. (1989) Vascular archictecture of melanocytic skin tumors. Path. Res. Pract. 185, 740–745.PubMedGoogle Scholar
  43. 43.
    Cockerell, C. J., Sonnier, G., Kelly, L., and Patel, S. (1994) Comparative analysis of neovascularisation in primary cutaneous melanoma and Spitz nevus. Am. J. Dermatopathol. 16, 9–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Folberg, R., Rummelt, V., Parys-Van Ginderdeuren, V., Hwang, T., Woolson, R., Pe’er, J., and Gruman, L. (1993) The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology 100, 1389–1398.PubMedGoogle Scholar
  45. 45.
    Pezzella, F., Pastorino, U., Tagliabue, E., Andreola, S., Sozzi, G., Gasparini, G., et al. (1996) Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am. J. Pathol. (1515), 1417–1423.Google Scholar
  46. 46.
    Simpson, J., Ahn, C., Battifora, H., and Esteban, J. (1994) Vascular surface area as a prognostic indicator in invsasive breast carcinoma. Lab. Invest. 70, 22A.Google Scholar
  47. 47.
    Brawer, M. K., Deering, R. E., Brown, M., Preston, S. D., Bigler, S. A. (1994) Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer 73, 678–687.PubMedCrossRefGoogle Scholar
  48. 48.
    Furusato, M., Wakui, S., Sasaki, H., Ito, K., and Ushigome, S. (1994) Tumor angiogenesis in latent prostatic carcinoma. Br. J. Cancer 70, 1244–1246.PubMedCrossRefGoogle Scholar
  49. 49.
    Bigler, S., Deering, R., and Brawer, M. (1993) Comparisons of microscopic vascularity in benign and malignant prostate tissue. Human Pathol. 24, 220–226.CrossRefGoogle Scholar
  50. 50.
    Williams, J. K., Carlson, G. W., Cohen, C., Derose, P. B., Hunter, S., and Jurkiewicz, M. J. (1994) Tumor angiogenesis as a prognostic factor in oral cavity tumors. Am. J. Surg. 168, 373–380.PubMedCrossRefGoogle Scholar
  51. 51.
    Wesseling, P., Vandersteenhoven, J. J., Downey, B. T., Ruiter, D. J., and Burger, P. C. (1993) Cellular components of microvascular proliferation in human glial and metastatic brain neoplasms. A light microscopic and immunohistochemical study of formalin-fixed, routinely processed material. Acta Neuropathol. (Berl) 85, 508–514.CrossRefGoogle Scholar
  52. 52.
    Charpin, C., Devictor, B., Bergeret, D., Andrac, L., Boulat, J., Horschowski, N., et al. (1995) CD31 Quantitative immunocytochemical assays in breast carcinomas. Am. J. Clin. Pathol. 103, 443–448.PubMedGoogle Scholar
  53. 53.
    Van der Laak, J., Westphal, J., Schalkwijk, L., Pahplazt, M., Ruiter, D., de Waal, R., and de Wilde, P. (1998) An improved procedure to quantify tumor vascularity using true color image analysis: comparison with the manual hot-spot procedure in a human melanoma xenograft model. J. Pathol. 184, 136–143.PubMedCrossRefGoogle Scholar
  54. 54.
    Paweletz, N. and Knierim, M. (1989) Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol. 9, 197–242.PubMedCrossRefGoogle Scholar
  55. 55.
    Blood, C. H. and Zetter, B. R. (1990) Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim. Biophys. Acta 1032, 89–118.PubMedGoogle Scholar
  56. 56.
    Bicknell, R. and Harris, A. L. (1991) Novel growth regulatory factors and tumor angiogenesis. Eur. J. Cancer 27, 781–785.PubMedCrossRefGoogle Scholar
  57. 57.
    Takahashi, Y., Kitadai, Y., Bucana, C. D., Cleary, K. R., and Ellis, L. M. (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis and proliferation of human colon cancer. Cancer Res. 55, 3964–3968.PubMedGoogle Scholar
  58. 58.
    Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Guidi, A. J., Dvorak, H. F., et al. (1995) Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum. Pathol. 26, 86–91.PubMedCrossRefGoogle Scholar
  59. 59.
    Moghaddam, A., Zhang, H. T., Fan, T. P., Hu, D. E., Lees, V. C., Turley, H., et al. (1995) Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc. Natl. Acad. Sci. USA 92, 998–1002.PubMedCrossRefGoogle Scholar
  60. 60.
    Anandappa, S. Y., Winstanley, J. H., Leinster, S., Green, B., Rudland, P. S., and Barraclough, R. (1994) Comparative expression of fibroblast growth factor mRNAs in benign and malignant breast disease. Br. J. Cancer 69, 772–776.PubMedCrossRefGoogle Scholar
  61. 61.
    Reynolds, K., Farzaneh, F., Collins, W. P., Campbell, S., Bourne, T. H., Lawton, F., et al. (1994) Association of ovarian malignancy with expression of platelet-derived endothelial cell growth factor. J. Natl. Cancer Inst. 86, 1234–1238.PubMedCrossRefGoogle Scholar
  62. 62.
    Garver, R. J., Radford, D. M., Donis, K. H., Wick, M. R., and Milner, P. G. (1994) Midkine and pleiotrophin expression in normal and malignant breast tissue. Cancer 74, 1584–1590.PubMedCrossRefGoogle Scholar
  63. 63.
    Janot, F., el-Naggar, A. K., Morrison, R. S., Liu, T. J., Taylor, D. L., and Clayman, G. L. (1995) Expression of basic fibroblast growth factor in squamous cell carcinoma of the head and neck is associated with degree of histologic differentiation. Int.J. Cancer 64, 117–123.PubMedCrossRefGoogle Scholar
  64. 64.
    Gomm, J. J., Smith, J., Ryall, G. K., Ballic, R., Turnbull, L., and Coombes, R. C. (1991) Localisation of basic fibroblast growth factor and transforming growth factor pi in the human mammary gland. Cancer Res. 51, 4685–4692.PubMedGoogle Scholar
  65. 65.
    Zarnegar, R. and DeFrances, M. C. (1993) Expression of HGF-SF in normal and malignant human tissues. EXS 65, 181–199.PubMedGoogle Scholar
  66. 66.
    Daa, T., Kodama, M., Kashima, K., Yokoyama, S., Nakayama, I., and Noguchi, S. (1993) Identification of basic fibroblast growth factor in papillary carcinoma of the thyroid. Acta Pathol. Japn. 43, 582–589.Google Scholar
  67. 67.
    Wong, S. Y., Purdie, A. T., and Han, P. (1992) Thrombospondin and other possible related matrix proteins in malignant and benign breast disease. Am. J. Pathol. 140, 1473–1482.PubMedGoogle Scholar
  68. 68.
    Schultz-Hector, S. and Haghayegh, S. (1993) Basic fibroblast growth factor expression in human and murine squamous cell carcinomas and its relationship to regional endothelial cell proliferation. Cancer Res. 53, 1444–1449.PubMedGoogle Scholar
  69. 69.
    Alvarez, J. A., Baird, A., Tatum, A., Daucher, J., Chorsky, R., Gonzalez, A. M., and Stopa, E. G. (1992) Localisation of basic fibroblast growth factor and vascular endothelial cell growth factor in human glial neoplasms. Mod. Pathol. 5, 303–307.PubMedGoogle Scholar
  70. 70.
    Guidi, A. J., Abu, J. G., Berse, B., Jackman, R. W., Tognazzi, K., Dvorak, H. F., and Brown, L. F. (1995) Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J. Natl. Cancer Inst. 87, 1237–1245.PubMedCrossRefGoogle Scholar
  71. 71.
    Zagzag, D., Brem, S., and Robert, F. (1988) Neovascularization and tumor growth in the rabbit brain. A model for experimental studies of angiogenesis and the blood-brain barrier. Am. J. Pathol. 131, 361–372.PubMedGoogle Scholar
  72. 72.
    Visscher, D. W., DeMattia, F., Ottosen, S., Sarkar, F. H., and Crissman, J. D. (1995) Biologic and clinical significance of basic fibroblast growth factor immunostaining in breast carcinoma. Mod. Pathol. 8, 665–670.PubMedGoogle Scholar
  73. 73.
    Toi, M., Kondo, S., Suzuki, H., Yamamoto, Y., Inada, K., Imazawa, T., et al. (1996) Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 77, 1101–1106.PubMedCrossRefGoogle Scholar
  74. 74.
    Plate, K. H., Breier, G., Millauer, B., Ullrich, A., and Risau, W. (1993) Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res. 53, 5822–5827.PubMedGoogle Scholar
  75. 75.
    Mattern, J., Koomagi, R., and Volm, M. (1996) Association of vascular endothelial growth factor expression with intratumoral microvessel density and tumor cell proliferation in human epidermoid lung carcinoma. Br. J. Cancer 73, 931–934.PubMedCrossRefGoogle Scholar
  76. 76.
    Maeda, K., Chung, Y. S., Ogawa, Y., Kang, S., Takatsuka, S., Ogawa, M., et al. (1996) Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 77, 858–863.PubMedCrossRefGoogle Scholar
  77. 77.
    Toi, M., Hoshina, S., Takayanagi, T., and Tominaga, T. (1994) Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Japn. J. Cancer Res. 85, 1045–1049.Google Scholar
  78. 78.
    Toi, M., Hoshina, S., Taniguchi, T., Yamamoto, Y., Ishitsuka, H., and Tominaga, T. (1995) Expression of platelet derived endothelial cell growth factor/thymidine phosphorylase in human breast cancer. Int. J. Cancer 64, 79–82.PubMedCrossRefGoogle Scholar
  79. 79.
    Fox, S. B., Westwood, M., Moghaddam, A., Comley, M., Turley, H., Whitehouse, R. M., et al. (1996) The angiogenic factor platelet-derived endothelial cell growth factor/thymidine phosphorylase is up-regulated in breast cancer epithelium and endothelium. Br. J. Cancer 73, 275–280.PubMedCrossRefGoogle Scholar
  80. 80.
    Nguyen, M., Watanabe, H., Budson, A. E., Richie, J. P., Hayes, D. F., and Folkman, J. (1994) Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J. Natl. Cancer Inst. 86, 356–361.PubMedCrossRefGoogle Scholar
  81. 81.
    Toi, M., Taniguchi, T., Yamamoto, Y., Kurisaki, T., Suzuki, H., and Tominaga, T. (1996) Clinical-significance of the determination of angiogenic factors. Eur. J. Cancer 32A, 2513–2519.PubMedCrossRefGoogle Scholar
  82. 82.
    Salven, P., Teerenhovi, L., and Joensuu, H. (1997) A high pre-treatment serum vascular endothelial growth factor concentration is associated with poor outcome in non-Hodgkin’s lymphoma. Blood 90, 3167–3172.PubMedGoogle Scholar
  83. 83.
    O’Brien, T. S., Smith, K., Cranston, D., Fuggle, S., Bicknell, R., and Harris, A. L. (1995) Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br. J. Urol. 76, 311–314.CrossRefGoogle Scholar
  84. 84.
    Chow, N. H., Chang, C. J., Yeh, T. M., Chan, S. H., Tzai, T. S., and Lin, J. S. (1996) Implications of urinary basic fibroblast growth factor excretion in patients with urothelial carcinoma. Clin. Science 90, 127–133.Google Scholar
  85. 85.
    Toi, M., Yamamoto, Y., Inada, K., Hoshina, S., Suzuki, H., Kondo, S., and Tominaga, T. (1995) Vascular endothelial growth factor and platelet-derived endothelial growth factor are frequently co-expressed in highly vascularized breast cancer. Clin. Cancer Res. 1, 961–964.PubMedGoogle Scholar
  86. 86.
    O’Brien, T., Cranston, D., Fuggle, S., Bicknell, R., and Harris, A. L. (1995) Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res. 55, 510–513.Google Scholar
  87. 87.
    O’Brien, T., Fox, S. B., Dickinson, A., Turley, H., Westwood, M., Moghaddam, A., et al. (1996) Expression of the angiogenic factor thymidine phosphorylase/platelet derived endothelial cell growth factor in primary bladder cancers. Cancer Res. 56, 4799–4804.Google Scholar
  88. 88.
    Schadendorf, D., Heidel, J., Gawlik, C., Suter, L., Czarnetzki. (1995) Association with clinical outcome of expression of VLA-4 in primary cutaneous malignant melanoma as well as P-selectin and E-selectin on intratumoral vessels. J. Natl. Cancer Inst. 87, 366–371.PubMedCrossRefGoogle Scholar
  89. 89.
    Kageshita, T., Yoshii, A., Kimura, T., Kuriya, N., Ono, T., Tsujisaki, M., et al. (1993) Clinical relevance of ICAM-1 expression in prmary lesions and serum of patients with malignant melanoma. Cancer Res. 53, 4927–4932.PubMedGoogle Scholar
  90. 90.
    Banks, R. E., Gearing, A. J., Hemingway, I. K., Norfolk, D. R., Perren, T. J., and Selby, P. J. (1993) Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies. Br. J. Cancer 68, 122–124.PubMedCrossRefGoogle Scholar
  91. 91.
    Brooks, P. C., Clark, R. A., and Cheresh, D. A. (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264, 569–571.PubMedCrossRefGoogle Scholar
  92. 92.
    Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., and Cheresh, D. A. (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164.PubMedCrossRefGoogle Scholar
  93. 93.
    Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., and Cheresh, D. A. (1995) Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96, 1815–1822.PubMedCrossRefGoogle Scholar
  94. 94.
    Pepper, M. and Montesano, R. (1990) Proteolytic balance and capillary morphogenesis. CellDiff. Dev. 32, 319–328.Google Scholar
  95. 95.
    Fisher, C., Gilbertson, B. S., Powers, E. A., Petzold, G., Poorman, R., and Mitchell, M. A. (1994) Interstitial collagenase is required for angiogenesis in vitro. Dev. Biol. 162, 499–510.PubMedCrossRefGoogle Scholar
  96. 96.
    Fox, S. B., Stuart, N., Smith, K., Brunner, N., and Harris, A. L. (1993) High levels of uPA and PAI-1 are associated with highly angiogenic breast carcinomas. J. Pathol. 170, 388A(suppl).Google Scholar
  97. 97.
    Grøndahl-Hansen, J., Christensen, I. J., Rosenquist, C., Brünner, N., Mouridsen, H. T., Danø, K., and Blichert, T. M. (1993) High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res. 53, 2513–2521.PubMedGoogle Scholar
  98. 98.
    Janicke, F., Schmitt, M., Pache, L., Ulm, K., Harbeck, N., Hofler, H., and Graeff, H. (1993) Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer. Breast Cancer Res. Treat. 24, 195–208.PubMedCrossRefGoogle Scholar
  99. 99.
    Foekens, J. A., Schmitt, M., van, P. W., Peters, H. A., Bontenbal, M., Janicke, F., and Klijn, J. G. (1992) Prognostic value of urokinase-type plasmin ogen activator in 671 primary breast cancer patients. Cancer Res. 52, 6101–6105.PubMedGoogle Scholar
  100. 100.
    Duffy, M. J., Reilly, D., O’Sullivan, C., O’Higgins, N., Fennelly, J. J., and Andreasen, P. (1990) Urokinase-plasminogen activator, a new and independent prognostic marker in breast cancer. Cancer Res. 50, 6827–6829.PubMedGoogle Scholar
  101. 101.
    Schmitt, M., Janicke, F., Moniwa, N., Chucholowski, N., Pache, L., and Graeff, H. (1992) Tumor-associated urokinase-type plasminogen activator: biological and clinical significance. Biol. Chem. Hoppe Seyler 373, 611–622.PubMedGoogle Scholar
  102. 102.
    Spyratos, F., Martin, P. M., Hacene, K., Romain, S., Andrieu, C., Ferrero, P. M., et al. (1992) Multiparametric prognostic evaluation of biological factors in primary breast cancer. J. Natl. Cancer Inst. 84, 1266–1272.PubMedCrossRefGoogle Scholar
  103. 103.
    Sumiyoshi, K., Serizawa, K., Urano, T., Takada, Y., Takada, A., and Baba, S. (1992) Plasminogen activator system in human breast cancer. Int. J. Cancer 50, 345–348.PubMedCrossRefGoogle Scholar
  104. 104.
    Ganesh, S., Sier, C. F. M., Heerding, M. M., Griffioen, G., Lamers, C. B. H. W., and Verspaget, H. W. (1994) Urokinase receptor and colorectal cancer survival. Lancet 344, 401–402.PubMedCrossRefGoogle Scholar
  105. 105.
    Protopapa, E., Delides, G. S., and Revesz, L. (1993) Vascular density and the response of breast carcinomas to mastectomy and adjuvant chemotherapy. Eur. J. Cancer 29A, 1141–1145.Google Scholar
  106. 106.
    Fox, S. B., Engels, K., Comley, M., Whitehouse, R. M., Turley, H., Gatter, K. C., and Harris, A. L. (1997) Relationship of elevated tumor thymidine phospho-Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Stephen B. Fox
    • 1
  1. 1.Department of Anatomical PathologyChristchurch HospitalChristchurchNew Zealand

Personalised recommendations