Skip to main content

Herpes Simplex Virus/Adeno-Associated Virus Hybrid Vectors for Gene Transfer to Neurons

Preparation and Use

  • Protocol
  • 743 Accesses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 69))

Abstract

Gene transfer to the central nervous system (CNS) has shown major advances in recent years, with the development of novel vector systems and progress in basic virology (112). To improve gene transfer to CNS neurons, we have combined the critical elements of herpes simplex virus-1 (HSV-I) amplicons and recombinant adeno-associated virus (AAV) vectors to construct a hybrid amplicon vector, and then packaged the vector into HS V-1 virions via a helper virus-free system. These HSV/AAV hybrid amplicon vectors have shown efficient transduction and stability of transgene expression in neurons (and other nondividing cell types [13)], both in culture and after intracerebral injection with no apparent toxicity or immune response, as well as extended transgene expression in dividing cells (14). Before detailing the hybrid amplicon vectors, a short description of the two vectors upon which the hybrid amplicon vectors are based is given.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lam P. and Breakefield X. O. (2000) Hybrid vector designs to conrol the delivery, fate and expression of transgenes. J. Gene Med., 2, 395–408.

    Article  PubMed  CAS  Google Scholar 

  2. Costantini L. C., Bakowska J. C., Breakefield X. O., and Isacson O. (2000) Gene therapy in the CNS. Gene Ther. 7, 93–109.

    Article  PubMed  CAS  Google Scholar 

  3. Lawrence M. S., Ho D. Y., Sun G. H., Steinberg G. K., and Sapolsky R. M. (1996) Overexpression of Bcl-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo. J. Neurosci. 16, 486–496.

    PubMed  CAS  Google Scholar 

  4. Bowers W., Howard D., and Federoff H. (1997) Gene therapeutic strategies for neuroprotection: implications for Parkinson’s disease. Exp. Neurol. 144, 58–68.

    Article  PubMed  CAS  Google Scholar 

  5. Davidson B. L. and Bohn M. C. (1997) Recombinant adenovirus: a gene transfer vector for study and treatment of CNS diseases. Exp. Neurol. 144, 125–130.

    Article  PubMed  CAS  Google Scholar 

  6. Verma I. and Somia N. (1997) Gene therapy: promises, problems, and prospects. Nature 389, 239–242.

    Article  PubMed  CAS  Google Scholar 

  7. Mandel R., Rendahl K., Spratt S., et al. (1998) Characterization of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase I in a rat model of Parkinson’s disease. J. Neurosci. 18, 4271–4284.

    PubMed  CAS  Google Scholar 

  8. Miyoshi H., Blömer U., Takahashi M., Gage F. H., and Verma I. M. (1998) Development of a self-inactivating lentivirus vector. J. Virol. 72, 8150–8157.

    PubMed  CAS  Google Scholar 

  9. Oligino T., Poliani P. L., Wang Y., et al. (1998) Drug inducible transgene expression in brain using a herpes simplex virus vector. Gene Ther. 5, 491–496.

    Article  PubMed  CAS  Google Scholar 

  10. Rendahl K., Leff S., Otten G., et al. (1998) Regulation of gene expression in vivo following transduction by two separate rAAV vectors. Nat. Biotechnol. 16, 757–761.

    Article  PubMed  CAS  Google Scholar 

  11. Xiao X., Li J., and Samulski R. J. (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232.

    PubMed  CAS  Google Scholar 

  12. Fraefel C., Jacoby D. R., and Breakfield X. O. (2000) Recent developments on herpes simplex virus type 1-based amplicon vector systems. Adv. Virus Res. 55, 425–452.

    Article  PubMed  CAS  Google Scholar 

  13. Fraefel C., Jacoby D. R., Lage C., Hilderbrand H., et al. (1997) Gene transfer into hepatocytes mediated by helper virus-free HSV/AAV hybrid vectors. Mol. Med. 3, 813–825.

    PubMed  CAS  Google Scholar 

  14. Johnston K., Jacoby D., Pechan P., et al. (1997) HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum. Gene Ther. 8, 359–370.

    Article  PubMed  CAS  Google Scholar 

  15. Ward P. L. and Roizman B. (1994) Herpes simplex genes: the blueprint of a successful human pathogen. Trends Genet. 10, 267–274.

    Article  PubMed  CAS  Google Scholar 

  16. Roizman B. and Sears A. E. (1996) Herpes simplex viruses and their replication, in Fields Virology (Fields B. N., Knipe D. M., and Howley P. M., eds.), Lippincott-Raven Philadelphia, pp. 2231–2296.

    Google Scholar 

  17. Glorioso J. C., Bender M. A., Goins W. F., DeLuca N., and Fink D. J. (1995) Herpes simplex virus as a gene-delivery vector for the central nervous system, in Viral Vectors, Kaplitt M. G. and Loewy A. D., eds., Academic San Diego, pp.1–23.

    Chapter  Google Scholar 

  18. Spaete R. and Frenkel N. (1982) The herpes virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30, 295–304.

    Article  PubMed  CAS  Google Scholar 

  19. Fraefel C., Song S., Lim F., et al. (1996) Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J. Virol. 70, 7190–7197.

    PubMed  CAS  Google Scholar 

  20. Kwong A. D. and Frenkel N. (1985) Efficient expression of chimeric chicken ovalbumin gene amplified with defective virus genomes. Virology 142, 421–425.

    Article  PubMed  CAS  Google Scholar 

  21. Sena-Esteves M., Saeki Y., Fraefel C., and Breakefield X. O. (2000) HSV-1 amplicon vectors-simplicity and versatility. Mol. Ther. 2, 9–15.

    Article  PubMed  CAS  Google Scholar 

  22. Xiao X., McCown T. J., Li J., et al. (1997) Adeno-associated virus (AAV) vector antisense gene transfer in vivo decreases GABA(A) alpha1 containing receptors and increases inferior collicular seizure sensitivity. Brain Res. 756, 76–83.

    Article  PubMed  CAS  Google Scholar 

  23. Yang G. Y., Zhao Y. J., Davidson B. L., and Betz A. L. (1997) Overexpression of interleukin-1 receptor antagonist in the mouse brain reduces ischemic brain injury. Brain Res. 751, 181–188.

    Article  PubMed  CAS  Google Scholar 

  24. Duan D., Sharma P., Yang J., et al. (1998) Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 72, 8568–8577.

    PubMed  CAS  Google Scholar 

  25. Wu P., Phillips M. I., Bui J., and Terwilliger E. F. (1998) Adeno-associated virus vector-mediated transgene integration into neurons and other nondividing cell targets. J. Virol. 72, 5919–5926.

    PubMed  CAS  Google Scholar 

  26. Muzyczka N. (1992) Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr. Top. Microbiol./Immunol. 158, 97–129.

    Article  CAS  Google Scholar 

  27. Weitzman M. D., Kyostio S. R., Kotin R. M., and Owens R. A. (1994) Adenoassociated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc. Nat.l Acad. Sci. USA 91, 5808–5812.

    Article  CAS  Google Scholar 

  28. Balague C., Kalla M., and Zhang W. W. (1997) Adeno-associated virus Rep78 protein and terminal repeats enhance integration of DNA sequences into the cellular genome. J. Virol. 71, 3299–3306.

    PubMed  CAS  Google Scholar 

  29. Walker S. L., Wonderling R. S., and Owens R. A. (1997) Mutational analysis of the adeno-associated virus Rep68 protein: identification of critical residues necessary for site-specific endonuclease activity. J. Virol. 71, 2722–2730.

    PubMed  CAS  Google Scholar 

  30. Kotin R. M., Linden R. M., and Berns K. I. (1992) Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J. 11, 5071–5078.

    PubMed  CAS  Google Scholar 

  31. Yang C. C., Xiao X., Zhu X., et al. (1997) Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro. J. Virol. 71, 9231–9247.

    PubMed  CAS  Google Scholar 

  32. Shelling A. N. and Smith M. G. (1994) Targeted integration of transfected and infected adeno-associated virus vectors containing the neomycin resistance gene. Gene Ther. 1, 165–169.

    PubMed  CAS  Google Scholar 

  33. Kearns W. G., Afione S. A., Fulmer S. B., et al. (1996) Recombinant adenoassociated virus (AAV-CFTR) vectors do not integrate in a site-specific fashion in an immortalized epithelial cell line. Gene Ther. 3, 748–755.

    PubMed  CAS  Google Scholar 

  34. Sodeik B., Ebersold M., and Helenius A. (1997) Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J. Cell Biol. 136, 1007–1021.

    Article  PubMed  CAS  Google Scholar 

  35. Bearer E. L., Breakefield X. O., Schuback D., Reese T. S., and LaVail J. H. (2000) Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument. Proc. Natl. Acad. Sci. USA 97, 8146–8150.

    Article  PubMed  CAS  Google Scholar 

  36. Costantini L. C., Jacoby D. R., Wang S., Fraefel C., Breakefield X. O. and Isacson O. (1999) Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno-associated virus amplicon vectors [published erratum appears in Hum. Gene Ther. 2000; 10, 11: 981]. Hum. Gene The.r 11, 2481-94.

    Google Scholar 

  37. Wang S., Fraefel C., and Breakefield X. O. HSV-1 amplicon vectors. Methods in Enzymol., Phillips I., ed. in press.

    Google Scholar 

  38. Sena-Esteves M., Hamp J. A., Camp S., and Breakefield X. O. Generation of stable retrovirus packaging cell lines after transduction with HSV/hybrid amplicons, in preparation.

    Google Scholar 

  39. Saeki Y., Ichikawa T., Saeki A., et al. (1998) Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum. Gene Ther. 9, 2787–2794.

    Article  PubMed  CAS  Google Scholar 

  40. Stavropoulos T. A. and Strathdee C. A. (1998) An enhanced packaging system for helper-dependent herpes simplex virus vectors. J. Virol. 72, 7137–7143.

    PubMed  CAS  Google Scholar 

  41. Saeki Y., Fraefel C., Ichikawa T., Breakefield X. O., and Chiocca E. A. (2001) Elimination of helper virus regeneration in packaged HSV-1 amplicon vector preparations by utilizing an ICP27-deleted and oversized HSV-1 helper DNA in a bacterial artificial chromosomal. Mol. Ther. 3, 591–601.

    Article  PubMed  CAS  Google Scholar 

  42. Hampl J., Brown. A., Rainov N. and Breakefield X. O. (2000) Methods for gene delivery to neural tissue, in Methods in Genomic Neuroscience (China H. R. and Moldin S. O., eds.), CRC Press Boca Raton, in press.

    Google Scholar 

  43. Geller A. I. and Breakefield X. O. (1988) A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science 241, 1667–1669.

    Article  PubMed  CAS  Google Scholar 

  44. Laughlin C. A., Tratschin J. D., Coon H., and Carter B. J. (1983) Cloning of infectious adeno-associated virus genomes in bacterial plasmids. Gene 23, 65–73.

    Article  PubMed  CAS  Google Scholar 

  45. Smith I. L., Hardwicke M. A., and Sandri-Goldin R. M. (1992) Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 186, 74–86.

    Article  PubMed  CAS  Google Scholar 

  46. Paxinos G., Watson C., eds. (1986) The Rat Brain in Stereotaxic Coordinates. Academic San Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Costantini, L.C., Fraefel, C., Breakefield, X.O., Isacson, O. (2002). Herpes Simplex Virus/Adeno-Associated Virus Hybrid Vectors for Gene Transfer to Neurons. In: Morgan, J.R. (eds) Gene Therapy Protocols. Methods in Molecular Medicine, vol 69. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-141-8:461

Download citation

  • DOI: https://doi.org/10.1385/1-59259-141-8:461

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-723-6

  • Online ISBN: 978-1-59259-141-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics