Skip to main content

Cytokine Gene-Modified Cell-Based Cancer Vaccines

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 69))

Abstract

Antitumor immunity was first suggested in animals that reject tumor challenge after immunization with autologous inactivated tumor cells. Later, the discovery of tumor antigens recognized by T-cells strongly reinforced the concept that the tumor can be targeted by the immune system. In 1991, Boon and colleagues described the first human tumor antigen, MAGE-1, that is expressed in 50–60% of melanomas (1). The identification of T-cell-dependent tumor antigens (MAGE family, BAGE, GAGE, HER2/neu, p53, MART-1, tyrosinase, HPV, and others) has opened the route of antigen-specific immunotherapy strategies (2,3). Despite these important advances in tumor immunology, most tumor antigens are still unknown. Until more common tumor-specific antigens have been identified and their prevalence and relevance have been evaluated, the tumor cell itself remains one of the most convenient sources of antigens. Preclinical studies have shown that immunization with modified inactivated tumor cells can generate systemic antitumor immunity in vivo (4). Currently, many clinical studies are investigating the safety and efficacy of autologous and allogeneic whole cell-based cancer vaccines (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Bruggen P., Traversari C., Chomez P., et al. (1991) A gene encoding an antigen recognized cytotoxic T lymphocytes on a human melanoma. Science 254, 1643–1648

    Article  PubMed  Google Scholar 

  2. Van den Eynde B. J. and van der Bruggen P. (1997) T-cell defined tumor antigens. Curr. Opin. Immunol. 9, 684–693.

    Article  PubMed  Google Scholar 

  3. Rosenberg S. A. (1999) A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10, 281–287.

    Article  PubMed  CAS  Google Scholar 

  4. Dranoff G., Jaffee E. M., Lazenby A., et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine GM-CSF stimulates potent, specific, long lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.

    Article  PubMed  CAS  Google Scholar 

  5. Human gene marker/Therapy clinical trial protocols. (1999) Hum. Gene Ther. 10, 1043–1092.

    Article  Google Scholar 

  6. Kruisbeek A. M. and Amsen D. (1996) Mechanisms underlying T-cell tolerance. Curr. Opin. Immunol. 8, 815–821.

    Article  Google Scholar 

  7. Sotomayor E. M., Borrello I., and Levistky H. (1996) Tolerance and cancer. Crit. Rev. Oncog. 7, 433–456.

    PubMed  CAS  Google Scholar 

  8. Lipton A., Harvey H. A., Balch C. M., et al. (1991) Corynebacterium parvum versus bacille Calmette-Guérin adjuvant immunotherapy of stage II malignant melanoma. J. Clin. Oncol. 9, 1151–1156.

    PubMed  CAS  Google Scholar 

  9. Schirrmacher V., Ahlert T., Probstle T., et al. (1998) Immunization with virus-modified tumor cells. Semin. Oncol. 25, 677–696.

    PubMed  CAS  Google Scholar 

  10. Wallich R., Bulbuc N., Hammerling G., et al. (1985) Abrogation of metastatic properties of tumor cells by de novo expression of H-2K antigens following H-2 gene transfection. Nature 315, 301–305.

    Article  PubMed  CAS  Google Scholar 

  11. Pulaski B. A. and Ostrand-Rosenberg S. (1998) Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines. Cancer Res. 58, 1486–1493.

    PubMed  CAS  Google Scholar 

  12. Chen C. A. and Okayama H. (1988) Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques 6, 882–886.

    Google Scholar 

  13. Gordon J. W. (1990) Micromanipulation of embryos and germs cells: an approach to gene therapy? Am. J. Med. Genet. 35, 206–214.

    Article  PubMed  CAS  Google Scholar 

  14. Kubiniec R. T., Liang H., and Hui S. W. (1990) effects of pulse length and pulse strength on transfection by electroporation. Biotechniques 8, 16–20.

    PubMed  CAS  Google Scholar 

  15. Hug P. and Sleight R. G. (1991) Liposomes for the transformation of eukaryotic cells. Biochim. Biophys. Acta 1097, 1–17.

    PubMed  CAS  Google Scholar 

  16. Wolff J. A., Malone R. W., Williams P., et al. (1990) Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.

    Article  PubMed  CAS  Google Scholar 

  17. Wu G. Y., Zhan P., Sze L. L., Rosenberg A. R., and Wu C. H. (1994) Incorporation of adenovirus into a ligand-based DNA carrier system results in retention of original receptor specificity and enhances targeted gene expression. J. Biol. Chem. 269, 11542–11546

    PubMed  CAS  Google Scholar 

  18. Jiao S., Cheng L., Wolff J. A., and Yang N.-S. (1993) Particle bombardment-mediated gene transfer and expression in rat brain tissues. Biotechnology 11, 497–502.

    Article  PubMed  CAS  Google Scholar 

  19. Mulligan R. C. (1991) Gene transfer and gene therapy. Principles, prospects, and perspective, in Etiology of Human Diseases at the DNA Level (Lindsten J. and Pettersson U., eds.), Raven, New York, pp. 143–181.

    Google Scholar 

  20. Danos O. and Mulligan R. C. (1988) Safe and efficient generation of recombi-nant retroviruses with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA 85, 6460–6464.

    Article  PubMed  CAS  Google Scholar 

  21. Armentano D., Sheau-Fung Y., Kantoff P., et al. (1987) Effect of internal viral sequences on the utility of retroviral vectors. J. Virol. 61, 1647–1650.

    PubMed  CAS  Google Scholar 

  22. Jaffee E. M., Dranoff G., Cohen L. W., et al. (1993) High efficiency gene transfer into primary human tumor explants without cell selection. Cancer Res. 53, 2221–2226.

    PubMed  CAS  Google Scholar 

  23. Kashara N., Dozy A. M., and Kan Y. W. (1994) Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266, 1373–1376.

    Article  Google Scholar 

  24. Naldini L., Blomer U., Gallay P., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.

    Article  PubMed  CAS  Google Scholar 

  25. Quantin B., Perricaudet L. D., Tajbakhsh S., and Mandel J. L. (1992) Adenovi-rus as an expression vector in muscle cells in vivo. Proc. Natl. Acad. Sci. USA 89, 2581–2584.

    Article  PubMed  CAS  Google Scholar 

  26. Bowman L., Grossmann M., Rill D., et al. (1998) Il-2 adenovector-transduced autologous tumor cells induce antitumor immune responses in patients with neu-roblastoma. Blood 92, 1941–1949.

    PubMed  CAS  Google Scholar 

  27. Barth R. J. Jr. and Mule J. J. (1996) Cytokine gene transfer into tumor cells: animal models, in Gene Therapy in Cancer (Brenner M. K. and Moen R. C., eds.), Marcel Dekker, New York, pp. 73–94.

    Google Scholar 

  28. Fearon E. R., Pardoll D. M., Itaya T., et al. (1990) Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60, 397–403.

    Article  PubMed  CAS  Google Scholar 

  29. Golumbek P. T., Lazenby A. J., Levitsky H. I., et al. (1991). Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 254, 713–716.

    Article  PubMed  CAS  Google Scholar 

  30. Gansbacher B., Zier K., Daniels B., Cronin K., Bannerji R., and Gilboa E. (1990) Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J. Exp. Med. 172, 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  31. Tepper R. I, Pattengale P. K., and Leder P. (1989) Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57, 503–512.

    Article  PubMed  CAS  Google Scholar 

  32. Hock H., Dorsch M., Diamantstein T., and Blankenstein T. (1991) Interleukin-7 induces CD4+ T-cell dependent tumor rejection. J. Exp. Med. 174, 1291–1298.

    Article  PubMed  CAS  Google Scholar 

  33. Asher A. L., Mule J. J, Kasid A., et al. (1991) Murine tumor cells transduced with the gene for tumor-necrosis factor-alpha. J. Immunol. 146, 3227–3234.

    PubMed  CAS  Google Scholar 

  34. Porgador A., Tzehoval E., Katz A., et al. (1992) Interleukin-6 gene transfection into lewis lung carcinoma tumor cells suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. Cancer Res. 52, 3679–3686.

    PubMed  CAS  Google Scholar 

  35. Colombo M. P., Ferrari G., Stoppacciaro A., et al. (1991) Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocar-cinoma in vivo. J. Exp. Med. 173, 889–897.

    Article  PubMed  CAS  Google Scholar 

  36. Gansbacher B., Bannerji R., Daniels B., et al. (1990) Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res. 50, 7820–7825.

    PubMed  CAS  Google Scholar 

  37. Hung K., Hayashi R., Lafond-Walker A., et al. (1998) The central role of CD4(+) T-cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368.

    Article  PubMed  CAS  Google Scholar 

  38. Inaba K., Inaba M., Romani N., et al. (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702.

    Article  PubMed  CAS  Google Scholar 

  39. Hallez S., Detremmerie O., Giannouli C., et al. (1999) Interleukin-12-secreting human papillomavirus type 16-transformed cells provide a potent cancer vaccine that generates E7-directed immunity. Int. J. Cancer 81, 428–437.

    Article  PubMed  CAS  Google Scholar 

  40. Tepper R. I. and Mule J. J. (1994) Experimental and clinical studies of cytokine gene-modified tumor cells. Hum. Gene Ther. 5, 153–164.

    Article  PubMed  CAS  Google Scholar 

  41. Zitvogel L., Robbins P. D., Storkus W. J., et al. (1996) Interleukin-12 and B7.1 co-stimulation cooperate in the induction of effective antitumor immunity and therapy of established tumors. Eur. J. Immunol. 26, 1335–1341.

    Article  PubMed  CAS  Google Scholar 

  42. Schreiber S., Kampgen E., Wagner E., et al. (1999) Immunotherapy of meta-static malignant melanoma by a vaccine consisting of autologous interleukin 2-transfected cancer cells: outcome of a phase I study. Hum. Gene Ther. 10, 983–993.

    Article  PubMed  CAS  Google Scholar 

  43. Abdel-Wahab Z., Weltz C., Hester D., et al. (1997) A phase I clinical trial of immunotherapy with interferon-γ gene-modified autologous melanoma cells: monitoring the humoral response. Cancer 80, 401–412.

    Article  PubMed  CAS  Google Scholar 

  44. Soiffer R., Lynch T., Mihm M., et al. (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 95, 13141–13146.

    Article  PubMed  CAS  Google Scholar 

  45. Simons J. W., Jaffee E. M., Weber C. E., et al. (1997) Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res. 57, 1537–1546.

    PubMed  CAS  Google Scholar 

  46. Moller P., Sun Y., Dorbic T., et al. (1998) Vaccination with Il-7 gene-modified autologous melanoma cells can enhance the anti-melanoma lytic activity in peripheral blood of patients with a good clinical performance status: a clinical phase I study. Br. J. Cancer 77, 1907–1916.

    Article  PubMed  CAS  Google Scholar 

  47. Sun Y., Jurgovsky K., Moller P., et al. (1998) Vaccination with Il-12 gene-modified autologous melanoma cells: preclinical results and a first clinical phase I study. Gene Ther. 5, 481–490.

    Article  PubMed  CAS  Google Scholar 

  48. Palmer K., Moore J., Everard M, et al. (1999). Gene therapy with autologous, interleukin-2 secreting tumor cells in patients with malignant melanoma. Hum. Gene Ther. 10, 1261–1268.

    Article  PubMed  CAS  Google Scholar 

  49. Bernhard H., Karbach J., Wolfel T., et al. (1994) Cellular immune response to human renal-cell carcinomas: definition of a common antigen recognized by HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones. Int. J. Cancer 59, 837–842.

    Article  PubMed  CAS  Google Scholar 

  50. Kawakami Y., Eliyahu S., Delgado C. H., et al. (1994) Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T-cells infiltrating into tumor. Proc. Natl. Acad. Sci. USA 91, 3515–3519.

    Article  PubMed  CAS  Google Scholar 

  51. Huang A. Y. C., Golumbek P., Ahmadzadeh M., et al. (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264, 961–965.

    Article  PubMed  CAS  Google Scholar 

  52. Thomas M. C., Greten T. F., Pardoll D. M, and Jaffee E. M. (1998) Enhanced tumor protection by granulocyte-macrophage colony-stimulating factor expression at the site of an allogeneic vaccine. Hum. Gene Ther. 9, 835–843.

    Article  PubMed  CAS  Google Scholar 

  53. Arienti F., Sule-Suso J., Belli F., et al. (1996) Limited antitumor T-cell response in melanoma patients vaccinated with interleukin-2 gene-transduced allogeneic melanoma cells. Hum. Gene Ther. 7, 1955–1963.

    Article  PubMed  CAS  Google Scholar 

  54. Belli F., Arienti F., Sule-Suso J., et al. (1997) Active immunization of meta-static melanoma patients with interleukin-2-transduced allogeneic melanoma cells: evaluation of efficacy and tolerability. Cancer Immunol. Immunother. 44, 197–203.

    Article  PubMed  CAS  Google Scholar 

  55. Bowman L. C., Grossmann M., Rill D., et al. (1998) Interleukin-2 gene-modified allogeneic tumor cells for treatment of relapsed neuroblastoma. Hum. Gene Ther. 10, 1303–1311.

    Article  Google Scholar 

  56. Jaffee E. M., Abrams R., Cameron J., et al. (1998) A phase I clinical trial of lethally irradiated allogeneic pancreatic tumor cells transfected with the GM-CSF gene for the treatment of pancreatic adenocarcinoma. Hum. Gene Ther. 9, 1951–1971.

    Article  PubMed  CAS  Google Scholar 

  57. Veelken H., Mackensen A., Lahn M., et al. (1997) A phase-I clinical study of autologous tumor cells plus interleukin-2-gene-transfected allogeneic fibroblasts as a vaccine in patients with cancer. Int. J. Cancer 70, 269–277

    Article  PubMed  CAS  Google Scholar 

  58. Mackensen A., Veelken H., Lahn M., et al. (1997) Induction of tumor-specific cytotoxic T lymphocytes by immunization with autologous tumor cells and interleukin-2 gene transfected fibroblasts. J. Mol. Med. 75, 290–296

    Article  PubMed  CAS  Google Scholar 

  59. Kotani H., Newton P. B., Zhang S., et al. (1994) Improved methods of retroviral vector transduction and production for gene therapy. Hum. Gene Ther. 5, 19–28.

    Article  PubMed  CAS  Google Scholar 

  60. Cornetta K. and Anderson F. (1989) Protamine sulfate as an effective alternative to Polybrene in retroviral-mediated gene transfer. J. Virol. Methods 23, 187–194.

    Article  PubMed  CAS  Google Scholar 

  61. Leventis R. and Silvius J. R. (1990) Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochem. Biophys. Acta 1023, 124–132.

    Article  PubMed  CAS  Google Scholar 

  62. Gearing A. J. H. and Bird C. B. (1987) Production and assay of Il-2, in Lymphok-ines and Interferons, a Practical Approach (Clemens M. J., Morris A. G., and Gearing A. J. H, eds.), IRL, Washington, DC, pp. 291–301.

    Google Scholar 

  63. Coligan J. E., Kruisbeck A. M., Margulies D. H., Shevach E. M., and Strober W. (1991) Current Protocols in Immunology, Greene and Wiley-Interscience, New York.

    Google Scholar 

  64. Kitanura T., Tojo A., Kuwaki T., et al. (1989) Identification and analysis of human erythropoietin receptors on a factor-dependent cell line, TF-1. Blood 73, 375–380.

    Google Scholar 

  65. Holmes K. L., Palaszymski E., and Fredrikson T. (1985) Correlation of cell-surface phenotype with the establishment of interleukin3-dependent cell lines from wild-mouse murine leukemia with virus-induced neoplasms. Proc. Natl. Acad. Sci. USA 82, 6687–6691.

    Article  PubMed  CAS  Google Scholar 

  66. Yokota T., Otsuka T., Mosmann T., et al. (1986) Isolation and characterization of a human interleukin cDNA clone, homologous to mouse B cell stimulatory factor 1, that expresses B cell stimulatory factor 1, that expresses B cell-and T-cell-stimulating activities. Proc. Natl. Acad. Sci. USA 83, 5894–5898.

    Article  PubMed  CAS  Google Scholar 

  67. Nordan R. P., Pumphrey J. G., and Rudikoff S. (1987) Purification and NH2-terminal sequence of a plasmocytoma growth factor derived from the murine mac-rophage cell line P388D1. J. Immunol. 193, 813–817.

    Google Scholar 

  68. Jaffee E. M., Thomas M. C., Huang A. Y., et al. (1996) Enhanced immune priming with spatial distribution of paracrine cytokine vaccines. J. Immunother. Emphasis Tumor Immunol. 19, 176–183.

    Article  PubMed  CAS  Google Scholar 

  69. Jaffee E. M., Schutte M., Gossett J., et al. (1998) Development and characterization of a cytokine-secreting pancreatic adenocarcinoma vaccine from primary tumors for use in clinical trials. Cancer J. Sci. Am. 4, 194–203.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Todd Reilly, R., Machiels, JP.H., Emens, L.A., Jaffee, E.M. (2002). Cytokine Gene-Modified Cell-Based Cancer Vaccines. In: Morgan, J.R. (eds) Gene Therapy Protocols. Methods in Molecular Medicine, vol 69. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-141-8:233

Download citation

  • DOI: https://doi.org/10.1385/1-59259-141-8:233

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-723-6

  • Online ISBN: 978-1-59259-141-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics