Skip to main content

Retrovirus-Mediated Gene Transfer to Human Hematopoietic Stem Cells

  • Protocol

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 69))

Abstract

The ability of hematopoietic stem cells (HSCs) to engraft in a recipient and establish long-term repopulation of the hematopoietic system makes them ideal targets for gene therapy vectors designed to correct inherited or acquired diseases affecting the hematopoietic and immune systems.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Golde D. W. (1991) The stem cell. Sci. Am. 265, 86–93.

    Article  PubMed  CAS  Google Scholar 

  2. Civin C. and Gore S. (1993) Antigenic analysis of hematopoiesis: a review. J. Hematother. 2, 137–144.

    Article  PubMed  CAS  Google Scholar 

  3. Molineux G., Pojda Z., Hampson I., Lord B., and Dexter T. (1990) Transplantation potential of peripheral blood stem cells induced by granulocyte colony stimulating factor. Blood 76, 2153–2158.

    PubMed  CAS  Google Scholar 

  4. Novelli E. M., Ramirez M., and Civin C. I. (1998) Biology of CD34+CD38-cells in lymphohematopoiesis. Leuk. Lymphoma 31, 285–293.

    PubMed  CAS  Google Scholar 

  5. Pluznik D. H. and Sachs L. (1966) The induction of clones of normal mast cells by a substance from conditioned medium. Exp. Cell. Res. 43, 553–563.

    Article  PubMed  CAS  Google Scholar 

  6. Eaves C. J., Cashman J. D., and Eaves A. C. (1991) Methodology of long-term culture of human hematopoietic cells. J. Tissue Culture Methods 13, 55–62.

    Article  Google Scholar 

  7. Orlic D. and Bodine D. M. (1994) What defines a pluripotent hematopoietic stem cell (PHSC): will the real PHSC please stand up! [Editorial]. Blood 84, 3991–3994.

    PubMed  CAS  Google Scholar 

  8. Hennemann B., Oh I. H., Chuo J. Y., et al. (2000) Efficient retrovirus-mediated gene transfer to transplantable human bone marrow cells in the absence of fibronectin. Blood 96, 2432–2439.

    PubMed  CAS  Google Scholar 

  9. Leung W., Ramirez M., Novelli E. M., and Civin C. I. (1998) In vivo engraftment potential of clinical hematopoietic grafts. J. Invest. Med. 46, 303–311.

    CAS  Google Scholar 

  10. Novelli E. M., Cheng L., Yang Y., et al. (1999) Ex vivo culture of cord blood CD34+ cells expands progenitor cell numbers, preserves engraftment capacity in nonobese diabetic/severe combined immunodeficient mice, and enhances retroviral transduction efficiency. Hum. Gene Ther. 10, 2927–2940.

    Article  PubMed  CAS  Google Scholar 

  11. Schiedlmeier B., Kuhlcke K., Eckert H. G., et al. (2000) Quantitative assessment of retroviral transfer of the human multidrug resistance 1 gene to human mobilized peripheral blood progenitor cells engrafted in nonobese diabetic/severe combined immunodeficient mice. Blood 95, 1237–1248.

    PubMed  CAS  Google Scholar 

  12. van der Loo J. C. M., Hanenberg H., Cooper R. J., et al. (1998) Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood cells. Blood 92, 2556–2570.

    PubMed  Google Scholar 

  13. Hao Q. L., Shah A. J., Thiemann F. T., Smogorzewska E. M., and Crooks G. M. (1995) A functional comparison of CD34 + CD3 8-cells in cord blood and bone marrow. Blood 86, 3745–3753.

    PubMed  CAS  Google Scholar 

  14. Hao Q. L., Thiemann F. T., Petersen D., Smogorzewska E. M., and Crooks G. M. (1996) Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 88, 3306–3313.

    PubMed  CAS  Google Scholar 

  15. Civin C.I., Almeida-Porada G., Lee M.J., et al. (1996) Sustained, retransplantable, multilineage engraftment of highly purified adult bone marrow stem cells in vivo. Blood 88, 4102–4109.

    PubMed  CAS  Google Scholar 

  16. Larochelle A., Vormoor J., Hanenberg H., et al. (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat. Med. 2, 1329–1337.

    Article  PubMed  CAS  Google Scholar 

  17. Gallacher L., Murdoch B., Wu D. M., Karanu F. N., Keeney M., and Bhatia M. (2000) Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 95, 2813–2820.

    PubMed  CAS  Google Scholar 

  18. Yin A. H., Miraglia S., Zanjani E. D., Almeida-Porada G., Ogawa M., Leary A. G., Olweus J., Kearney J., and Buck D. W. (1997) AC133, anovel marker for human hematopoietic stem and progenitor cells. Blood 90, 5002–5012.

    PubMed  CAS  Google Scholar 

  19. Ziegler B. L., Valtieri M., Porada G. A., De Maria R., Muller R., Masella B., Gabbianelli M., Casella I., Pelosi E., Bock T., Zanjani E. D., and Peschle C. (1999) KDR receptor: a key marker defining hematopoietic stem cells. Science 285, 1553–1558.

    Article  PubMed  CAS  Google Scholar 

  20. Bhatia M., Bonnet D., Murdoch B., Gan O. I., and Dick J. E. (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nature Med. 4, 1038–1045.

    Article  PubMed  CAS  Google Scholar 

  21. Nakamura Y., Ando K., Chargui J., Kawada H., Sato T., Tsuji T., Hotta T., and Kato S. (1999) Ex vivo generation of CD34(+) cells from CD34(−) hematopoietic cells. Blood 94, 4053–4059.

    PubMed  CAS  Google Scholar 

  22. Bender J., Unverzagt K., Walker D., Lee W., van Epps D., Smith D., Stewart C. C., and To L. B. (1991) Identification and comparison of CD34-positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry. Blood 77, 2591–2596.

    PubMed  CAS  Google Scholar 

  23. Nagler A., Peacock M., Tantoco M., Lamons D., Okarma T. B., and Lamons D. (1993) Separation of human progenitors from human umbilical cord blood. J. Hematotherapy 2, 243–245.

    Article  CAS  Google Scholar 

  24. Miller D. G., Adam M. A., Garcia J. V., and Miller A. D. (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell Biol. 10, 4239–4242.

    PubMed  CAS  Google Scholar 

  25. Dorrell C., Gan O. I., Pereira D. S., Hawley R. G., and Dick J. E. (2000) Expansion of human cord blood CD34(+)CD38(−) cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood 95, 102–110.

    PubMed  CAS  Google Scholar 

  26. Glimm H. and Eaves C. J. (1999) Direct evidence for multiple self-renewal divisions of human in vivo repopulating hematopoietic cells in short-term culture. Blood 94, 2161–2168.

    PubMed  CAS  Google Scholar 

  27. Kollet O., Aviram R., Chebath J., et al. (1999) The soluble interleukin-6 (IL-6) receptor/IL-6 fusion protein enhances in vitro maintenance and proliferation of human CD34(+)CD3 8(−/low) cells capable of repopulating severe combined immunodeficiency mice. Blood 94, 923–931.

    PubMed  CAS  Google Scholar 

  28. Breems D. A., Blokland E. A. W., Siebel K. E., et al. (1998) Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells. Blood 91, 111–117.

    PubMed  CAS  Google Scholar 

  29. Shih C. C., Hu M. C., Hu J., et al. (2000) A secreted and LIF-mediated stromal cell-derived activity that promotes ex vivo expansion of human hematopoietic stem cells. Blood 95, 1957–1966.

    PubMed  CAS  Google Scholar 

  30. Bodine D., Karlsson S., and Nienhuis A. (1989) Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus-mediated gene transfer into hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 86, 8897–8901.

    Article  PubMed  CAS  Google Scholar 

  31. Bodine D., Crosier P., and Clark S. (1991) Effects of hematopoietic growth factors on the survival of primitive stem cells in liquid suspension culture. Blood 78, 914–920.

    PubMed  CAS  Google Scholar 

  32. Luskey B. D., Rosenblatt M., Zsebo K., and Williams D. A. (1992) Stem cell factor, interleukin-3, and interleukin-6 promote retroviral-mediated gene transfer into murine hematopoietic stem cells. Blood 80, 396–402.

    PubMed  CAS  Google Scholar 

  33. Cassel A., Cottler-Fox M., Doren S., and Dunbar C. E. (1993) Retroviral-mediated gene transfer into CD34-enriched human peripheral blood stem cells. Exp. Hematol. 21, 585–591.

    PubMed  CAS  Google Scholar 

  34. Nolta J. A. and Kohn D. B. (1990) Comparison of the effects of growth factors on retro viral vector-mediated gene transfer and the proliferative status of human hematopoietic progenitor cells. Hum. Gene Ther. 1, 257–268.

    Article  PubMed  CAS  Google Scholar 

  35. Nolta J. A., Crooks G. M., Overell R. W., Williams D. E., and Kohn D. B. (1992) Retroviral vector-mediated gene transfer into primitive human hematopoietic progenitor cells: effects of mast cell growth factor (MGF) combined with other cytokines. Exp. Hematol. 20, 1065–1071.

    PubMed  CAS  Google Scholar 

  36. Kohn D. B., Weinberg K. I., Nolta J. A., et al. (1995) Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nature Med. 1, 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  37. Conneally E., Cashman J., Petzer A., and Eaves C. (1997) Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-SCID/SCID mice. Proc. Natl. Acad. Sci. USA 94, 9836–9841.

    Article  PubMed  CAS  Google Scholar 

  38. Dao M. A., Hannum C. H., Kohn D. B., and Nolta J. A. (1997) FLT3 ligand preserves the ability of human CD34+ progenitors to sustain long-term hematopoiesis in immune-deficient mice after ex-vivo retroviral-mediated transduction. Blood 89, 446.

    PubMed  CAS  Google Scholar 

  39. Piacibello W., Sanavio F., Garetto L., et al. (1997) Extensive amplification and self-renewal of human primitive hematopoietic stem cell from cord blood. Blood 89, 2644–26

    PubMed  CAS  Google Scholar 

  40. Piacibello W., Sanavio F., Severino A., et al. (1999) Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood 93, 3736–3749.

    PubMed  CAS  Google Scholar 

  41. Case S. S., Price M. A., Jordan C. T., et al. (1999) Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc. Natl. Acad. Sci. USA 96, 2988–2993.

    Article  PubMed  CAS  Google Scholar 

  42. Miyoshi H., Smith K. A., Mosier D. E., Verma I. M., and Torbett B. E. (1999) Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283, 683–686.

    Article  Google Scholar 

  43. Hennemann B., Chuo J. Y., Schley P. D., et al. (2000) High-efficiency retroviral transduction of mammalian cells on positively charged surfaces. Hum. Gene Ther. 11, 43–51.

    Article  PubMed  CAS  Google Scholar 

  44. Bahnson A. B., Dunigan J. T., Baysal B. E., et al. (1995) Centrifugal enhancement of retroviral mediated gene transfer. J. Virol. Methods 54, 131–143.

    Article  PubMed  CAS  Google Scholar 

  45. Dunbar C. E., Kohn D. B., Schiffmann R., et al. (1998) Retroviral transfer of the glucocerebrosidase gene into CD34+ cells from patients with Gaucher disease: in vivo detection of transduced cells without myeloablation. Hum. Gene Ther. 9, 2629–2640.

    Article  PubMed  CAS  Google Scholar 

  46. Parkman R., Weinberg K., Crooks G., Nolta J., Kapoor N., and Kohn D. (2000) Gene therapy for adenosine deaminase deficiency. Ann. Rev. Med. 51, 33–47.

    Article  PubMed  CAS  Google Scholar 

  47. Ohashi T., Boggs S., Robbins P., et al. (1992) Efficient transfer and sustained high expression of the human glucocerebrosidase gene in mice and their functional macrophages following transplantation of bone marrow transduced by a retroviral vector. Proc. Natl. Acad. Sci. USA 89, 11332–11336.

    Article  PubMed  CAS  Google Scholar 

  48. Lemishka I. R., Raulet D. H., and Mulligan R. C. (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927.

    Article  Google Scholar 

  49. Kohn D. B., Bauer G., Rice C. R., et al. (1999) A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 94, 368–371.

    PubMed  CAS  Google Scholar 

  50. Wong-Staal F., Poeschla E. M., and Looney D. J. (1998) A controlled, phase 1 clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA. Hum.Gene Ther. 9, 2407–2425.

    Article  PubMed  CAS  Google Scholar 

  51. Abonour R., Williams D. A., Einhorn L., et al. (2000) Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat. Med. 6, 652–658.

    Article  PubMed  CAS  Google Scholar 

  52. Cowan K. H., Moscow J. A., Huang H., et al. (1999) Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin. Cancer Res. 5, 1619–1628.

    PubMed  CAS  Google Scholar 

  53. Blaese R. M., Culver K. W., Miller A. D., et al. (1995) T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270, 475–480.

    Article  PubMed  CAS  Google Scholar 

  54. Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G., et al. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672.

    Article  PubMed  CAS  Google Scholar 

  55. Kay M. A., Manno C. S., Ragni M. V., et al. (2000) Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat. Genet. 24, 257–261.

    Article  PubMed  CAS  Google Scholar 

  56. Malech H. L., Maples P. B., Whiting-Theobald N., et al. (1997) Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc. Natl. Acad. Sci. USA 94, 12133–12138.

    Article  PubMed  CAS  Google Scholar 

  57. Novelli E. M., Swaney W. P., Kopp D., et al. (2000) A phase I trial of retroviral-mediated gene therapy of Gaucher disease. Blood 96S.

    Google Scholar 

  58. Malech H. L. (2000) Use of serum-free medium with fibronectin fragment enhanced transduction in a system of gas permeable plastic containers to achieve high levels of retrovirus transduction at clinical scale. Stem Cells 18, 155–156.

    Article  PubMed  CAS  Google Scholar 

  59. Schuening F., Longo W. L., Atkinson M. E., et al. (1997) Retrovirus-mediated transfer of the cDNA for human glucocerebrosidase into peripheral blood repopulating cells of patients with Gaucher’s disease. Hum. Gene Ther. 8, 2143–2160.

    Article  PubMed  CAS  Google Scholar 

  60. Dao M. A., Taylor N., and Nolta J. A. (1998) Reduction in levels of the cyclin-dependent kinase inhibitor p27(kip-1) coupled with transforming growth factor beta neutralization induces cell-cycle entry and increases retroviral transduction of primitive human hematopoietic cells. Proc. Natl. Acad. Sci. USA 95, 13006–13011.

    Article  PubMed  CAS  Google Scholar 

  61. Swaney W. P., Sorgi F. L., Bahnson A. B., and Barranger J. A. (1997) The effect of cationic liposome pretreatment and centrifugation on retrovirus-mediated gene transfer. Gene Ther. 4, 1379–1386.

    Article  PubMed  CAS  Google Scholar 

  62. Bahnson A. B., Nimgaonkar M., Ball E. D., and Barranger J. A. (1997) Methods for retrovirus-mediated gene transfer to CD34+-enriched cells, in Methods in Molecular Medicine, Gene Therapy Protocols. Humana, Totowa,NJ, pp. 249–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Swaney, W.P., Novelli, E.M., Bahnson, A.B., Barranger, J.A. (2002). Retrovirus-Mediated Gene Transfer to Human Hematopoietic Stem Cells. In: Morgan, J.R. (eds) Gene Therapy Protocols. Methods in Molecular Medicine, vol 69. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-141-8:187

Download citation

  • DOI: https://doi.org/10.1385/1-59259-141-8:187

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-723-6

  • Online ISBN: 978-1-59259-141-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics